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Experimentally observed space-time crystals are described here as sequences of quantum parallel computing 

processes which have the appearance of reversible computing in each sequence. We present here a quantum 

system consisting of an entangled atomic chain modeled in a deterministic cellular automaton system to show 

that the periodic reappearance of an initial computational state does not imply reversibility in the quantum 

computing system. The origin of this irreversibility is in the waste of half the time steps in generating the 

observable discrete space-time crystals. This is due to the simultaneous existence of both clockwise and 

counterclockwise cyclic CA transition rules for the computational states in generating the quantum computing 

results. While each sequence is periodic and thus reversible by itself, the crystals from the two sequences are 

indistinguishably superposed in every other time steps. This waste of time steps is the design by the quantum 

nature of having an equal probability of the computational state transitions, or equivalently, of having two 

equally allowed signs of transferring electron phases between two entangled atoms. Thus, we predict that any 

attempt to observe those individual computational CA sequences will be only half successful even though the 

value of the periodicity itself can be correctly established. The results shown here are very general for any 

initial CA configurations composed by those four cyclic computational states, which are linked by a unitary 

transformation to the four orthogonal electronic states of the atom in each cell to form a string of entangled 

atoms. 
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I. Introduction 
Parallel computing, classical or quantum, deals with spatial transformation rules. It is sufficient to deal 

with just four computational states defined as: S1 = (0, 0), S2 = (0, 1), S3 = (1, 0), and S4 = (1, 1). Each state is 

then associated with a specific black-and-white spatial pattern. For example, any addition operation can be 

achieved with the manipulations of two long bit-strings that are composed by those four computational states 

[1]. The quantum processor needed to perform such manipulations are manmade and the computing architecture 

is necessarily in cellular automata, which utilizes a two-bit cell, if the interconnections between the processors 

are to be at the minimum. The evolution of two long bit-strings that forms the initial computational states 

reflects the capability of the quantum processor resided in each CA cell to achieve the desirable results, such as 

obtaining the correct final computational state of the addition operation resided in each cell. The computational 

states are clearly the observables and are all real quantities. This is certainly the case for the general-purpose 

quantum computing [1]. Now if the man-made processor is replaced by an atom to perform some special-

purpose quantum computing, the four computational states must remain in place to be used as the observables. 

But the observables now reflect the capability or the inner working of the electron wave functions of the 

entangled atoms. In other words, the evolution of the computational states as the observables are the results of 

the interferences or the constraints of the phases at each electron energy among the entangled atoms. If the four 

computational states are sufficient for general-purpose computing, then they are also enough for the special-

purpose computing per-formed by the entangled atoms. Consequently, the corresponding atom resided in each 

cell needs to have just four electron energies, E1, E2, E3, and, E4, and the four corresponding orthogonal states, 

S1, S2, S3, and S4. The relation between the four computational states and the four orthogonal states in each cell 

is linked by the unitary transformation as dictated by the quantum mechanics. But the entire CA evolution is not 

related by a unitary transformation from one iteration to the next as we would like to emphasize here from the 

start. The net result is that the computational states now exhibited in the form of discrete time crystals and with 

birth-and-death of a space-time block elsewhere [1]. 

The periodical appearance of a space-time block in CA clearly shows a deterministic CA evolution 

sequence in the sense that after the first appearance of the space-time block, all the subsequent structure of the 

CA evolution is determined and predictable in four different space-time block forms [2]. This is the 
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characteristic of a special class of CA evolutions having an equal probability of transition among the four 

computational states. The deterministic nature of the CA evolution is clearly also a class of reversible CA 

exhibited by a structured Sierpinski triangle [2]. 

But the question is: in view of the reversible CA having periodical appearances of four different basic 

space-time blocks, can the actual quantum computing itself reversible as an observable result at all? We show 

the generation’s computational states are only half-observable. The other half are in superposed states and 

therefore half of the time steps are wasted as far as computation is concerned. This is the center of our 

investigation. Having a reversible CA as indicated by the predictable computational states does not guarantee 

the reversibility of quantum computing because there are two sequences of concurrently superposed 

computational states in the quantum nature, one is clockwise cyclic and the other counterclockwise cyclic (the 

conjugate) in the observables. That means the phase relation of the electrons among the entangled atoms are 

dual-valued in the computing processes. The phase values of transferring the four orthogonal states for an 

electron from one cell to the next are ±π/2, ±π, ±3π/2, and ±2π. The signs for the two half-integer phases have 

no effect on the results of the computational states. But the two integer phases for the clockwise and 

counterclockwise are super-posed in two different computational states and become un-observable. This implies 

half of all the time steps are wasted by the design of the quantum nature through its overcapacity in time steps 

for computational purpose. That means each of the clockwise and counterclockwise computational states can 

only be observable in half of the time steps. In the other time steps, two different outcomes are superposed and 

cannot be separated, even though there are two concurrent CAs that are reversible individually. In other words, 

the quantum nature pro-vides us twice the amount more than we need to observe in the form of computing. This 

is our main result and is very general for any initial computational-state configurations. 

Thermodynamic irreversibility deals with waste of energy that is not recoverable. Computing 

irreversibility correspondingly deals with data that is not recoverable, data which costs energy to both generate 

and erase. For example, in an addition operation if neither of the operands are saved then the operation is 

irreversible. Here, saving the data is a form of waste of space. Parallel computing, however, involves not only 

space, but also the instruction capability and the time steps needed to generate the data. Therefore, the concept 

of computing irreversibility must also be extended to include both the instruction capability and the time steps 

that are built-in in the system in generating the computation. This is manifest in the overcapacity of the 

instructions provided from a quantum processor which cannot be removed or separated from the quantum 

processor, or from the over-capacity of the pertinent time-steps, which is the center of our investigation here. 

Birth-and-death of space-time blocks shows an example of waste of instruction capability [2]. Here we present 

the third kind of computing irreversibility: waste of time steps designed by the quantum nature for our 

observation. This is in addition to the two kinds of computing irreversibility shown earlier 

 

[1]. Here we would like to make clear that irreversibility is not a property of the CA, which is itself 

reversible and hence why we do not discuss irreversibility in the CA shown here, but rather the irreversibility is 

in the actual computing itself. 

 

 
 

FIG. 1. A finite non-Euclidean space-time crystal is illustrated as an entangled atomic chain of size N and 

spacing a, shown here with N = 8 and an initial computational state of S4S3S1S2S4S4S4S3. Each atom is 

associated with four free-electron energy levels and four corresponding orthogonal states. Four different phase 

gains corresponding to the four energy levels of the atom are incurred when an orthogonal state is transported 

from l 1 to l as indicated. However, during the transport there are two possible phase transformations possible 

depending on the transition rule, one clockwise and the other counter-clockwise. The results of from each 

transition rule are mutually conjugate. 
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Recently, the demonstrations of space-time crystals from theory to experimental verification [3{8] 

implies a reversibility of computing in such a quantum system in crypto equilibrium, since any initial 

computational state from a chain of entangled atoms will repeat itself un-der periodic external perturbation, a 

Floquet system [3]. Each external perturbation, such as a laser pulsing on each atom to cause a transition 

between the energy levels within the atom, requires a minimum waste of energy at the amount of kTln2, as 

shown by Landauer [5]. That is the thermal energy times the amount of the information content of changing one 

bit, the entropy. In addition, thermodynamic irreversibility lies the appearance of computational reversibility 

under periodic perturbation of the quantum system. 

The question here is whether such quantum computing processes are reversible under the appearance of 

the space-time crystal generations. The signature of space-time crystals from such periodic laser pulses is that 

the size of the crystals always lies between N x2N and N x4N, regardless of the initial computational states. 

Here N is the number of atoms of the entangled atomic chain. The signature of a space-time crystal generation is 

the value of sub-harmonic limited to between ½ and ¼, independent of the period of the perturbation. The 

evolution of an entangled atomic chain under such a periodic perturbations is itself a quantum parallel 

computing process, because the computational state of every atom is altered at each iteration simultaneously. 

The generation of a time crystal can then be modeled within a framework of cellular automata (CA). 

This is recently described [1] using a model quantum system where each atom in the chain has 4 free-electron 

energy levels, corresponding to four orthogonal states S1, S2, S3, and S4. Here m = 1, 2, 3, 4 and a is the 

 

 
 

FIG. 2. Three different sets of 16 CA spatial transformation rules for computational states: Set (a) is the 

rule for an addition operation of two n-bit integers. Here, the computational states must be identified with the 

operand pairs as S1 = 0/0, S2 =0/1, S3 = 1/0, and S4 = 1/1. Note that the S1 and S2 states have three times the 

survival probability in each CA iteration compared to the S3 and S4 states, and the CA chain also must be 

Euclidean. A finite rectangular space-time block is generated in the addition operation. Set demonstrated the 

birth-and-death of space-tine blocks of size Nx2N in an in finite helical chain. Both (a) and (b) can utilize the 

same quantum processor but with a different interconnection scheme. Note here that all four computational 

states have an equal survival probability after each iteration. Set (c) is for a quantum CA system where each 

atom is the quantum processor as depicted in Fig. 1. The corresponding four computational states in this system 

must have an equal survival probability at each transition, and in addition be cyclic as shown. There are two 

cyclic sequences that are equally probable in nature, one clockwise (c1), and the other counter-clockwise (c2). 

spacing between atoms and m, the electron mass (Fig. 1). The evolution of the initial computational state of each 

atom is constrained by the relation to its neighboring atoms through an entanglement environment. The four 

computational states, S1, S2, S3, and S4, are each a linear combination of the four orthogonal momentum-vector 

states through the unitary transformation. The Hamiltonian of the entangled atomic chain can also be 

conveniently built-in through the use of a cellular automata (CA) architecture without the need to construct it as 
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we have shown earlier [1]. When CA is applied to a quantum system, an operator must operate on a state at the 

same location due to the nature of quantum mechanics. In CA, however, an operator acts on its neigh-boring 

state as indicated by the transition rules, while simultaneously being a state in itself and depends on the 

neighboring relations. Together, that means a quantum operator (a computational state as an operator) must be 

transported to its neighboring site first before acting on that neighboring state. Since a computational state is a 

linear combination of the four orthogonal states of the atom as defined above, each of the orthogonal states will 

acquire four different phases when they are trans-ported to the neighboring site. This results in the relation, SmSn 

= δmne
imπ/2 

Sm where m, n = 1, 2, 3, 4. Note that the quantum operator, Sm(l - 1), is located at position l-1 while 

the operand, Sn(l), is located at its neighbor of l. Thus, there are four different phases π/2, π, 3π/2, and 2π, 

acquired for the four different energies when the four orthogonal states of the atom are trans-ported to its 

neighboring site. 

It is then important to note that if those four phase relations are to be maintained under the 

transportation, then the corresponding CA transition rules for the four computational states, through the unitary 

transformation, must be of equal probability and cyclic as was shown earlier [1, 2]. This establishes that 

quantum CA system with its Hamiltonian automatically built-in and without using the Euclidean addition rules 

[1]. Those relations are shown in Fig. 1 in an example, where the initial configuration of N = 8 is 

S4S3S1S2S4S4S4S2. The equal probability, cyclic transition rules are shown in Fig 2 (c1, c2). The advantage of 

bringing a quantum system into the CA computing architecture is that there is now no need for a Hamiltonian 

formulation of an entire system when the cyclic computational rules are imposed. If the proper Hamiltonian 

needed is shown to be decomposed into several additive components, then the cyclic rules used here will be 

inconsistent with the addition rules of the Hamiltonian. In other words, the additive terms in the Hamiltonian 

force one to use the addition-rule-compatible CA operations shown in Fig 2 (a), and the cyclic rules used here, 

Fig 2 (c1, c2) are inherently incompatible with addition-rule-based CA. That is the reason why a larger and 

complex quantum system is more efficient or more convenient to be built up by smaller qua-tum components 

directly, such as an entangled atomic chain. This is analogous to a multiplication operation being built by many 

CA chains of addition operations. 

In a finite CA with an infinite confinement wall, as in those experimental settings [3], the evolution of a 

computational state of each atom in CA will be governed by the phase changes incurred from the neighboring 

relations, but each site with various periodicities. When all periods converge in all cells, it establishes the period 

of the space-time crystal generated. This is shown for an arbitrary initial computational states using the c1 rule 

from Fig. 2 (Fig. 3). The space-time crystal shown here is of 

 

 
 

FIG. 3. The space-time crystal generated from the clockwise cyclic rules of size N x2N is shown on the right 

columns in black blocks. The initial configuration is S2S1S3S4. For an infinite quantum chain, birth-and-death of 

space-time crystals can be generated as shown by the block marked ’*’ which is identical to the original 4x8 unit 

space-time block. This is an example of teleportation in the quantum system. 
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FIG. 4. The corresponding space-time crystal generated from the counter-clockwise cyclic rules is shown with 

the same initial configuration as in Fig. 3. This crystal differs from Fig. 3 on every other row as indicated by the 

black dot. Half of the data or the computing generated from the two cyclic rules is wasted because they are not 

useful to the generation of the space-time crystal in nature. 

 

The size N x2N, if N is an integer of 4. Generally the size is limited between N x2N and N x4N and the 

space-time crystals themselves reflect the associated quantum parallel computing processes, just like the 

addition of two bit-strings, using man-made quantum processors. The evolution of an arbitrary initial 

computational-state having undergone the CA iterations is a quantum parallel computing process on the initial 

state as performed by an entangled atomic chain where each atom is a quantum processor with four instructions. 

This is much like an array of interconnected man-made quantum processors in CA to perform an addition 

operation of two long bit-strings. This part has been demonstrated earlier by the use of a man-made quantum 

processor with the capacity for four instructions and the storage of two data bits [9{12] (also US Patent 

#8,525,544) using Aharonov-Bohm-based quantum networks [10]. 

 

II. DISCUSSIONS 
In the situation of an addition operation, computing is irreversible if one of the two operands is not 

saved along with the result. This irreversibility creates a condition where too much data must be saved over the 

course of a calculation in order to retain reversibility. The origin of this irreversibility shown in the addition 

operation is also found in the 16 CA transition rules, where two of the computational states (S1 and S2) have 

three times the probability to survive than the other two states (S3 and S4) at each iteration (Fig. 2(a)). However, 

in quantum computing system by an entangled atomic chain, the (cyclic) transition rules used provide an equal 

survival probability among the four computational states as shown in Fig 2 (c1; c2). The existence of space time 

crystals raises the important question: whether or not such a quantum computing process is actually reversible. 

Irreversibility in computing generally means a waste of space such that some data is to be destroyed or reduced 

to a smaller data set in order not to waste the data space. This applies addition operations and beyond in general-

purpose computing. 

The concept of irreversibility in parallel computing must be expanded to include two other forms of 

waste: waste of instruction capabilities and waste of time steps in the computing process. In the birth-and-death 

of space-time blocks demonstrated using the same quantum processor used in the addition operation but with 

different interconnections, we showed that only half of the instruction capabilities are utilized in the steady state, 

and only the first two steps require the full instruction capacity. Thus, a waste of instruction capabilities is a 

form of irreversibility [1, 2], even though the CA is reversible in the form of a structured Sierpinski triangle [2, 

12]. In quantum systems that result in space-time crystals, the irreversibility in computing means un-avoidably 

there are data un-necessarily or un-usefully generated in part of the time steps that are not readable due to 

superposition of the two sets of data simultaneously present in every other time steps. In other words, a waste of 

time for producing readable data steps is another form of irreversibility. In the example of the N x2N crystal in 

Fig. 3 using the CA rule from Fig. 2 (c1), one can argue that half of the time steps are wasted because there 

exists another set of cyclic rules, Fig. 2 (c2) and Fig. 4, which occurs with an equal probability in nature. These 

two rules are conjugate to each other from + and - signs of allowed phase changes of the orthogonal states. 

Hence we denote the "clockwise" and counterclockwise" sequences of the computational states. This results in a 

generation where every other row compared between two crystals with the same seed generated under these two 
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conjugate rules is identical, and the intermediate rows differ, and the computational states S2 and S4 are 

swapped between them. For this second cyclic rule, the momentum-vector transition is given by SmSn = δmne
imπ/2 

Sm. This does not affect the transition for states S2S2 and S4S4, but causes the transitions for states S1S1 and 

S3S3 to become conjugate. Since clockwise and counterclockwise systems are equally probable in quantum 

mechanics, the useful data generated in the N x2N space-time block is only found in the time steps when both 

sequences generated identical data, as in the intermediary steps data from the clockwise and counter-clockwise 

generations are superimposed producing a wasted time step in the computation. This creates the equivalent of an 

Nx2N block of useful or readable information, even though the periodicity is 2N. The intermediate steps form a 

waste of the time steps, but nevertheless must stay in the crystal generation. This example shows how 

reappearance of an initial seed does not necessarily imply reversibility in computing, as both crystal generations 

under the same initial configuration but with different rules, show a reappearance of that same seed at the same 

time intervals, and are also identical in one half of the time steps. 

 

III. CONCLUSIONS 
The irreversibility in computing is connected with how data generated are necessarily removed and hence 

not re-coverable. The necessity of saving the data space applies to the situation of addition operations and 

beyond in general-purpose computing. The space-time blocks generated in an addition operation are generally 

rectangular, and the one-dimensional CA has to be in Euclidean space because addition rules are associated with 

straight lengths. This concept is first expanded to include how data are generated by a man-made quantum 

processor other than the spatial transformations for addition rules. If half of the instruction capabilities of the 

processor are not used (that means, out of the 16 CA rules, only eight are used in the steady state as in the rule 

set shown in Fig. 2(b)), a full capacity has to be maintained with the processor. Nevertheless the waste of the 

capability is a form of irreversibility. This applies to many CA systems with an equal probability of transitions 

among all the computational states. The space-time blocks generated are of size Nx2N, and the space utilized is 

helical, such as in DNA, because the interconnections between the processors are different from the 

interconnections for addition operations where Euclidean space is required. An Euclidean space is the singular 

requirement that is established for the addition operation and hence this is the only singular set of 16 CA 

transition rules that produce the addition rule as shown in Fig. 2(a). Any deviation from this particular set of 

rules, which are for the rest of 4
16

 sets, will bring us to utilize Non-Euclidean space. The helical chain is also an 

example for DNA with CGTA-type of four computational states, and birth-and-death of space-time blocks is 

generated if the space is infinite. 

In the third example here of an entangled chain of atoms, the quantum processor is the atom itself and 

not man-made. The orthogonality of 4 atomic states in each atom of the model quantum system implies the four 

computational states for the CA transition rules are not only of equal probability but also have cyclic transitions. 

The space-time crystals generated are in Nx2N blocks where the size of the initial atomic chain is N and N is a 

power of 2. In this case, the computing irreversibility is caused by the waste of half of the time steps used to 

generate the space-time crystals. The reason is that there are two probable cyclic sequences in the quantum 

nature, one is clock-wise and the other counter-clockwise, or equivalently the + and - signs of electron phases 

assigned for transferring an orthogonality states of the electron to its neighbor. They generate the space-time 

blocks which are identical in every other step. Since both cyclic rules are equally probable in quantum 

mechanics and hence the unreadable or the superposed data are generated half of the time without further 

processing. The waste of half the time steps in the generation of these space-time crystals is the cause of this 

quantum computing irreversibility. That means in the quantum nature, a single CA chain can run two concurrent 

computational-state transition rules simultaneously through the dual-valued phase transfer of the electron from 

cell to cell, but only produces useful computational data on every-other row, producing a waste of time steps 

and hence computing irreversibility. 
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