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Abstract: This paper presents experimental and numerical investigations to study the performance of heated 
reinforced crumbed rubber concrete short columns under axial compression load. The experimental program of 
this study includes testing of nine columns. The mixtures of these columns have been produced by replacing the 
fine aggregate with crumb rubber at designated replacement levels of zero, 10%, and 20% by total fine 
aggregate volume. Three columns have been kept as control columns, while the other six columns have been 
exposed to elevated temperatures of 400ºC and 600 oC for a period of 3 hours. The heated columns have been 
left to cool down at room temperature and then axially loaded till failure. The experimental results have been 
utilized for validation of finite element models which have been developed using the well-known Finite Element 
(FE) software; ANSYS. The experimental results have shown that the percentage of loss in the residual axial 
capacity and the secant stiffness of columns increases as the exposure temperature increased to 400oC and 
600oC. Increasing the rubber amount led to a decrease in the strength and the stiffness magnitudes. 
Nevertheless, the ductility was significantly improved by using crumb rubber. Furthermore, the constructed FE 
models have succeeded in simulating the temperature distribution across the column’s cross section and in 
predicting its ultimate axial load capacity. 
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I. INTRODUCTION 
Concrete is one of the most widely used materials in the world and due to massive leap in concrete 

structures, the natural resources are depleting gradually. The availability of natural aggregates at a reasonable 
rate is of a big concern of the concrete industry [1]. On the other hand, due to the growing use of the automobile 
sector, the number of waste tires is continually increasing. Finding a useful method to dispose of waste rubber is 
becoming a major issue. Using recycled rubber as additives to or replacements of construction materials is a 
viable alternative to the disposal option [2,3]. Some researchers [4–10] studied the effects of inclusion the 
crumb rubber in concrete on the physical, thermal and mechanical properties of the concrete. It was found that 
the use of rubber reduces the compressive strength of the concrete to a certain extent. Bisht and Ramana [11] 
proved that increasing the rubber content up to 4%, the compressive and flexural strengths examine slight 
decrease and water absorption and abrasion resistance are also marginally affected. Al-Tayeb et al. [12] and 
Dong et al. [13] reported that the compressive strength decreased by increasing the percentage of crumb rubber 
content. Liuet al. [14] investigated the influence of the percentage of recycled rubber on the performances of 
concrete. It was observed that increasing the volume fractions of rubber particles led to improve the durability 
and show an adverse effect on the mechanical strength. Atahan A. O., and Yücel A. [15] reported that increasing 
the amount of rubber in concrete led to a decrease in the compressive strength and modulus values, while it 
increases concrete’s impact resistance and energy dissipation capacity. Abended et al [16] carried out an 
experimental test to study the behavior of concrete-filled steel tubes (CFST) incorporating rubberized concrete. 
Their test results indicated that the use of rubber crumb improved the fresh-state workability but it had an 
adverse influence on the compressive strength of the concrete. Youssf et al [17] provide different mechanical 
properties of FRP confined and unconfined CRC with different concrete mixtures having 0%, 10%, 20%, 30%, 
40%, and 50% rubber volume replacement of fine aggregate. Mendis et al [18] carried out experimental and 
numerical studies to investigate the flexural shear behavior of reinforced crumbed rubber concrete beams with 
different volumes of rubber, and with or without shear reinforcement. The compressive strength behavior of 
rubber crumb and steel fiber reinforced recycled aggregate concrete under high temperature was evaluated by 
Guo et al [19]. The results showed that both the compressive strength and stiffness of concrete mixes decreased 
after exposure to elevated temperature. Youssf et al [20] performed an experimental investigation to study the 
behavior of rubberized concrete columns under axial compression and incrementally increasing reverse cyclic 
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2.2. Configuration of the Specimens 
 In order to study the performance effects of elevated temperatures on the load carrying capacity of RC 
square columns incorporating crumb rubber, nine RC columns have been constructed and tested experimentally. 
Three unheated columns have been kept as reference specimens while the remaining six columns have been 
exposed to elevated temperature for 3 hours, and all columns have been tested under axial compression load. All 
the specimens have the same square cross-section of 150 mm and a height of 1000 mm. In all columns, Ø 6mm 
smooth bars have been used as stirrups spaced at 100 mm at the upper and lower thirds of the columns and at 
140 mm in the middle region. Furthermore, four bars of Ф10 mm diameter have been used as the longitudinal 
reinforcement as shown in Fig.3. The nine specimens have been divided into three groups [A], [B], and [C]. 
Each group contains three columns with 0%, 10%, and 20% rubber content replacement of the total fine 
aggregate volume. The specimens of group [A] have subjected to ambient temperature (unheated), while the 
specimens of the two other groups [B] and [C] have been heated for three hours at a temperature of 400oC and 
600oC for group [B] and [C]; respectively. A list of the tested specimens is shown in Table 2.In this table, the 
notation "R" relates to "Room" temperature. 

 
Table 2: Description of the test specimens 

Group ID Specimen ID a Temperature 

[A] 

C-M0-R Room temperature (24oC) 

C-M10-R Room temperature (24oC) 

C-M20-R Room temperature (24oC) 

[B] 

C-M0-400 400oC  - for a duration of 3 hours 
C-M10-400 400oC  - for a duration of 3 hours 
C-M20-400 400oC  - for a duration of 3 hours 

[C] 

C-M0-600 600oC  - for a duration of 3 hours 
C-M10-600 600oC  - for a duration of 3 hours 
C-M20-600 600oC  - for a duration of 3 hours 

a Column - Mix code – Temperature 
 
2.3. Heating of Columns Specimens 
 Heating of the tested columns to the required high temperatures has been carried out using an electric 
furnace of internal dimensions 400x450x1200 mm. The columns have been heated after an age of 45 days after 
casting them. One column with three 150 mm cubes were placed in the furnace and heated for a period of 3 
hours at the required temperature, as shown in Fig. 4. After reaching the required temperature for the planed 
duration, the furnace has been switched off and the specimens have been allowed to cool off naturally to the 
room temperature by opening the furnace door. Fig. 5 shows the time-temperature curves for the heated 
columns. From the figure it can be noted that, the higher the crumb rubber content is, the lower the gradient of 
the temperature inside the center of the column is. A possible explanation for this is that, using the crumb rubber 
results in decreasing the voids in the micro-structure of the concrete mixture which, in turn, resulted in 
decreasing its porosity and have a significant influence on its behavior. The porosity of concrete depends on 
several factors related to the water-cement ratio and the level of internal micro-cracking. During heating, the 
porosity of concrete is increased due to water evaporation. 
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with respect to the unheated column containing the same amount of crumb rubber; respectively. Moreover, 
exposing the columns with 0%, 10%, and 20% rubber to 600oC has resulted in a significant loss of their stiffness 
by 53%, 59%, and 63%; respectively. Generally, for both heated and unheated columns, it has been observed 
that the loss in their axial load capacity has been lower than the loss in their secant stiffness. This may be due to 
the loss in their capacity which has been accompanied; frequently, by an increase in their axial displacement. 
 

Table 4: Summary of the test results 

Group ID Specimen ID 
Failure Load 

(kN) 

Axial 
displacement 

(mm) 

Secant 
Stiffness 

% loss with respect to C-M0-R in 

Failure Load Secant Stiffness 

[A] 

C-M0-R 788 8.00 98.50 - - 

C-M10-R 733 8.00 91.63 6.98 4.24 

C-M20-R 675 8.25 81.82 14.34 16.94 

[B] 

C-M0-400 597 8.75 68.23 24.24 30.73 

C-M10-400 540 10.75 50.23 31.47 49.00 

C-M20-400 479 9.250 51.78 39.21 47.43 

[C] 

C-M0-600 540 11.75 45.96 31.47 53.34 

C-M10-600 455 12.50 39.57 42.26 59.83 

C-M20-600 385 10.75 35.81 51.14 63.64 

 
 

IV. NUMERICAL SIMULATION USING FINITE ELEMENT (FE) METHOD 
 Numerical simulation usually provides a powerful tool for performing various investigations in a very 
small time and an extremely lower cost comparing to the experimental tests. Also, it allows carrying out 
comprehensive investigations and parametric studies which cannot be achieved experimentally due to lab's 
constraints and difficulties. In order to get trusted conclusions based on the numerical investigations, their 
results must be reliable and have an acceptable agreement with the experimental results. Accordingly, the main 
issue in the numerical investigation is how to build a numerical model that can simulate the experimental test. 
This process; building the numerical model, includes choosing the software which has acceptable capabilities to 
facilitate the modeling process, choosing the elements' types that conform with the studied problem and the 
required results and, the ability of applying the boundary conditions and the different types of loads in the same 
manner as in the experimental tests and in the real cases. If this issue is solved and the acceptable agreement 
between the model results and the experimental ones are achieved, then extending the study and carrying out the 
required investigations will be a simple task. 
 In this paper, our interest is to provide a numerical modeling process to get the ultimate axial capacity 
and to simulate the behavior of the reinforced concrete columns when subjected to elevated temperatures. 
Accordingly, nine numerical models have been provided for all of the tested columns using the finite element 
package, ANSYS. The validation of these numerical models has been obtained by comparing their numerical 
results with the experimental ones. 
 
4.1 Numerical Modeling of Columns  
 Nine Finite Element (FE) models have been constructed using the well-known FE software; ANSYS 
[27], to simulate the tested columns. The 8-nodes Solid65 structural solid element, which has three degrees of 
freedom at each node, has been used to model the concrete. The 3-D spar 2-nodes Link8 element has been used 
to simulate both the longitudinal and transversal reinforcements. It is worth to mention that the Solid65 element 
has the ability of cracking in tension and crushing in compression to accurately model the concrete behavior at 
ultimate stages. The most important aspect of this element is the treatment of the nonlinear material properties, 
as well as, the induced plastic deformation. The shear-transfer coefficients for open and closed cracks have been 
set to 0.6 and 0.9; respectively. Furthermore, the Link8 element has three translational degrees of freedom at 
each node and it has various capabilities of creep, rotation, large deflection, and large strain. 
 
4.2 Material Properties 
 As explained before in the experimental program, six of tested specimens have been subjected to 
elevated temperatures inside the furnace and then left to cool out to the room temperature and then the axial load 
test has been performed. In order to accurately simulate this process, the constituent material models have to 
reflect the expected changes in the materials' behavior during heating, cooling and, loading processes. To do so, 
the material models should be determined at specific elevated temperatures, as well as, at the room temperature. 
When the elevated temperature is applied to the model, the program makes linear interpolation between the 
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one minute on the time-temperature relation. Simultaneously, the surface pressure time history has been applied 
with a constant zero pressure during the heating and cooling processes to simulate the inside-furnace stage. 
After reaching the maximum time of the time-temperature relation, an additional time with additional load step 
has been provided to apply the surface pressure load on the column's upper face in order to simulate the axial 
load test. During this phase, the temperature value has been kept at the room temperature while the surface 
pressure has been increased gradually till the column's failure. A number of 100 sub-steps have been utilized 
during this time step. 
 
4.5 Numerical Modeling Results 
 The full nonlinear transient analysis has been triggered for each model and the results have been 
obtained. The results include the body temperature distribution inside the column, the load-axial displacement 
behavior of the studied columns and, the ultimate axial capacity of the studied columns. To verify the modeling 
process, the obtained results have been compared to the experimental test results. 
 
4.5.1 Body temperature distribution 

For the first obtained result; which is the distribution of the body temperature across the column, a 
section located at the column's mid height has been selected to show the contours of the body temperature that 
the column has been affected by. Due to expected variation of the body temperature with respect to time, a 
snapshot has been taken every 50 minutes for the body temperature on the selected cross section. The obtained 
snapshots are shown in Fig. 16. According to this figure, at the beginning of heating, Time = 0.02 minute; all 
the elements have almost the same temperature which equals to the room temperature as shown in Fig. 16 (a).  

When the temperature has been increased during heating process of the furnace, the temperature of the 
outer faces of the outer rows of elements has reached the same temperature of the furnace; 399.874 ºC (Time = 
50 minutes), while the temperature of the column's core elements reached much lower temperature of about 
135ºC. For the intermediate elements between the outer rows and the column core elements, the temperature 
varies between the two temperature values of these elements. By further heating, the temperature of the outer 
faces has reached 400 ºC while that of the inner elements has increased gradually up to 260.045 ºC at time of 
150 minutes. This means that the heat transfer flow has continued over time from the outer surface to the 
column's core which simulates the heating process. After the heating process has been stopped after the planned 
duration, the furnace door has been opened and the specimen has been allowed to cool off by to the room 
temperature. Accordingly, the temperature of the outer faces of the outer elements has started to decrease 
gradually. However, the temperature of the column's core elements has been noticed to increase. This may be 
due to the fact that just after heating stops, the heat transfer flow still in the same direction from the outer faces 
to the core resulting in increasing the temperature of the inner regions as shown in Fig. 16 (e). When the cooling 
process has continued, the direction of the heat flow has inverted and the column's core has started to lose its 
temperature over the time. It can be noticed that the rate of losing the body temperature of the inner elements is 
less than that of the elements at the column surfaces which is expected due to their direct contact with the 
surrounding air which rapidly lost its temperature due to opening the furnace door. Finally, it is worth to 
mention that the temperature distribution is symmetric during the whole heating and cooling processes. Another 
sample of the temperature distribution across the column's cross section is shown in Fig. 17. 
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4.5.2 Ultimate capacity and axial load-axial displacement behavior 
 The axial load-axial displacement relations for the nine studied columns have been obtained, plotted 
and, compared to those of the experimental tests. A comparison between the load-axial displacements relations 
of the columns of group [A] in which no elevated temperature has been applied to the columns are shown in Fig. 
18. Similar comparisons have been constructed and are shown in Fig. 19 and Fig. 20 for groups [B] and [C]; 
respectively. A list of the obtained ultimate axial capacity from the FE models along with those obtained from 
the experimental program is listed in Table 5. 
 
4.5.2.1 Group [A] 
 As can be noticed from Fig. 18, the FE models could successfully predict the ultimate capacity of the 
tested columns. However, there are some differences between the behaviors that have been obtained from the 
FE models and their corresponding experimental tests. This is may be due to the concave of the first part of the 
stress-strain curve of concrete in reality as schematically illustrated in Fig. 21. This concave part cannot be 
modeled in the used software; ANSYS, because it does not allow any stiffness to be greater than the initial 
stiffness of the stress-strain curve. Even if there will be stress stiffening, the stiffness in this case should be less 
than the initial tangent stiffness. Consequently, this difference between the modeled stress-strain relation and the 
actual one affects the load-axial displacement behavior especially at the early loading stages. However, this 
difference has not affected the obtained ultimate capacities of the FE models.  
 According to the FE results of the unheated specimens, it can be noticed that the difference between the 
FE and the experimental results ranges between 0.27% and 2.79% which means that the FE models can 
accurately predict the ultimate capacity of the tested columns. Furthermore, the specimen with 10% of its fine 
aggregate has been replaced by crumbed rubber shows lower failure load by about 4.5% comparing to the 
original case where its fine aggregate has not been replaced by any other material. Moreover, if the percentage 
of the replaced fine aggregate with the crumbed rubber is increased to 20%, the ultimate capacity decreases by 
about 12% comparing to the original case. 
 
4.5.2.2 Group [B] 

For specimens of group [B] which have been subjected to a temperature of 400ºC for three hours, Fig. 
19 shows a comparison between the obtained axial load-axial displacement behavior from the FE models with 
the experimental results of these specimens. As can be noticed from this comparison, the FE models have 
succeeded in predicting the ultimate axial load carrying capacity of these specimens. However, a difference in 
the behavior between the experimental test and the numerical model exists. This is similar to the difference 
between the experimental and numerical behaviors that has been highlighted before in the unheated specimens 
and it, possibly, owes to the same reason. 

According to this figure, the difference between the ultimate capacities of the FE models and those of 
the experimental tests ranges between 0.5% and 4.59%. This small difference illustrates the good agreement 
between the ultimate capacity of the FE models and the experimental tests. Furthermore, as in the unheated 
columns, the existence of the crumbed rubber has decreased the ultimate capacity of the column by about 6% to 
23% when replacing 10% and 20% of the fine aggregate with the crumbed rubber; respectively. This can be due 
to the decrease in the concrete strength when the crumbed rubber has replaced part of its fin aggregate. Another 
reason for this loss in capacity is that at elevated temperatures, the concrete itself loses a significant portion of 
its strength. That is why this group shows lower ultimate capacities comparing to the corresponding cases in the 
unheated case; group [A]. 
 
4.5.2.3 Group [C] 
 For the last group of specimens; group [C], which have been subjected to a higher temperature of 
600ºC for the same duration as group [B]; three hours, Fig. 20 shows a comparison between the obtained axial 
load-axial displacement behavior from the FE models with the experimental results of the specimens of group 
[C]. According to this comparison, the FE models have also succeeded in predicting the ultimate axial load 
carrying capacity of this group with a similar difference in the behavior between the experimental test and the 
numerical model exists as in the two previous groups. The percentage of difference in the ultimate capacities 
between the FE and the experimental results ranges between 0.52% and 1.32% which indicates the good 
agreement between the obtained FE and experimental ultimate capacities. Furthermore, using the concrete with 
the crumbed rubber has decreased the ultimate capacity by about 14% and 28% for 10% and 20% replacement 
of fine aggregate by the crumbed rubber; respectively. 
 Finally, Table 5 shows a summary of the obtained FE results along with the experimental program 
results for comparison purposes. As can be noticed from this table, the maximum percentage of difference 
between FE results and experimental ones is about 6.6% for the axial displacement and 3.7% for the failure 
load; i.e. the ultimate axial capacity of the column. Also, it can be concluded that using the crumbed rubber 
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V. CONCLUSIONS 
In this paper, an experimental program including nine square short columns with various crumb rubber 

content were carried out in order to investigate the effect of elevated temperatures on the behavior of short 
reinforced crumb rubber concrete columns. The nine columns were divided into three groups each of them 
contained three columns with different crumb rubber content. The crumb rubber content was utilized as a partial 
replacement of the fine aggregate of 0%, 10%, and 20% of the fine aggregate’s volume. The first group was 
subjected to axial load testing at ambient room temperature without heating. The second and the third groups 
were heated first for three hours to a temperature of 400ºC and 600ºC for the second and the third group, 
respectively, and then left to cool down to room temperature and then were subjected to axial load test. 

Furthermore, numerical models using the well-known FE software, ANSYS; were constructed to 
simulate these columns’ behavior when subjected to elevated temperatures. The nonlinear material properties of 
the constituent materials were considered. Same sequence of heating, cooling and, axial loading of the columns 
was successfully simulated in the numerical models. These numerical models can be the basis for carrying out 
any further required parametric study in order to study the effect of any specific parameter on such columns. 
Based on the results of both of the experimental and numerical investigations, the following conclusions can be 
drawn: 
1. Using crumb rubber in concrete had a negative effect on its compressive strength, as the compressive 

strength values in case of crumb rubber concrete decreases with the increase of the quantity of crumb 
rubber. 

2. Using waste tire rubber in concrete had an adverse influence on the load carrying capacity and stiffness of 
the heated and unheated columns. When the rubber content was increased from 10% to 20% for the 
unheated columns, the loss in the axial load carrying capacity was increased from about 7% to about14% 
and the percentage of loss in the secant stiffness was increased from about 4% to about 17% with respect to 
the control specimen (C-M0-R). 

3. For both heated and unheated columns, the loss in their axial load capacity is lower than the loss in their 
secant stiffness. This may be due to the loss in their capacity which was accompanied; frequently, by an 
increase in their axial displacement. 

4. The elevated temperature has a significant effect on the load carrying capacity of the columns without 
rubber. The axial load carrying capacity of the tested columns has lost about 24% and 31% of their 
capacities comparing to the un-heated one when the applied elevated temperature has reached 400ºC and 
600ºC; respectively. 

5. For the columns with 10% crumb rubber has been used, the loss in their capacities reached about 26% and 
38% of the similar unheated column’s capacity when heated up to 400ºC and 600ºC; respectively. 

6. If the crumb rubber amount was 20% of the fine aggregate, heating the columns up to 400ºC and 600ºC 
results in increasing the percentage of the loss in their capacities to about 32% to 43% with respect to the 
unheated column containing the same amount of crumb rubber; respectively. 

7. Exposing the columns with 0%, 10%, and 20% crumb rubber to elevated temperature 600oC results in a 
significant loss of their stiffness by about 53%, 59%, and 63%; respectively. 

8. For both heated and unheated columns, the loss in their axial load capacity is lower than the loss in their 
secant stiffness. This may be due to the loss in their capacity which has been accompanied, frequently; by 
an increase in their axial displacement. 

9. Good agreement between the obtained ultimate axial capacities from the numerical models and those 
correspondences which were obtained from the experimental test. 

10. The numerical models succeeded in simulating the effect of heating and cooling processes and the 
temperature transfer from the outer surface of the column to its inner core and vice versa. 

11. The obtained axial load-axial displacement behavior from the models showed some with respect to that of 
the experimental test. This is may be due to the concave part that usually occurs in the first part of the actual 
stress-strain curve of concrete at early loading stages. This concave part cannot be modeled in the used 
software, because it does not allow any stiffness to be greater than the initial stiffness of the stress-strain 
curve. However, this difference vanishes at ultimate stage and the accuracy of the obtained axial capacity 
was assessed and was proven to be in good agreement with the experimental ones. 
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