Integration of Boolean Operators on Reversible Circuits Using NM-Library

Mohamed Osman ${ }^{1}$, Ahmed Younes ${ }^{2}$, Galal Ismail ${ }^{3}$, Roushdy Farouk ${ }^{3}$
${ }^{1}$ (Mathematics Department, Faculty of Science / Damanhour University, Egypt)
${ }^{2}$ (Mathematics and Computer Science Department, Faculty of Science / Alexandria University, Egypt)
${ }^{3}$ (Mathematics Department, Faculty of Science / Zagazig University, Egypt)
Corresponding Author: Mohamed Osman

Abstract

The study of reversible logic synthesis problem using group theory is getting more attention. By reducing the reversible circuit synthesis problem to permutation group. This permits Schreier-Sims Algorithm for the strong generating set-finding problem to be used to construct NM-based reversible circuits. This paper will present methods to integrate any three Boolean operators, as long as the integration maintains reversibility, as NM-based reversible circuit with zero-garbage output. It is shown that the order of the Boolean operator in the output vector affects the efficiency of the quantum circuit.

Keywords: Reversible Circuit, Quantum Cost, Quantum Circuit, Boolean Operators, Group Theory
Date of Submission: 05-07-2019
Date of acceptance: 21-07-2019

I. Introduction

Reversible logic [1,2] is an interest area of research. Classical Boolean gates are mainly irreversible and cannot be used directly in the reversible circuits' synthesis [3]. Synthesis of multipurpose reversible logic gates has been proposed [4]. Reversible circuits are a fundamental requirement in the emerging field of quantum computation [5]. Reversible circuits have many applications such as: building quantum computers, bioinformatics, nanotechnology based systems, DNA computing, low power CMOS systems and etc [5,6,7]. Tight bounds on the synthesis of 3-bit reversible circuits using NCT library has been shown in [8]. Integration of irreversible gates in reversible circuits using NCT library has been shown in [9].

Recently, the focus on studying the reversible logic synthesis problem using group theory is rising rapidly. Investigation on the universality of the basic building blocks of reversible circuits has been done [12,13]. A relation between Young subgroups and the reversible logic synthesis problem has been proposed [14]. GAP-based algorithms that synthesize reversible circuits for various types of gate with various gate costs have been proposed $[9,10,11,15]$. GAP-based algorithms that is used to synthesize reversible circuits for one type of gates have been proposed [16,17,18].

The aim of the paper is to use the $N M^{3}$-based reversible circuits [18] to design a reversible circuit that simulates the construction of Boolean operators such as $A N D, O R, N O T, X O R, N A N D$ and $N O R$ in a single zero-garbage output. This is done by integrating any three Boolean operators, so that the integration maintains the reversibility of the circuit. All results shown in this paper have been implemented and tested using the group theory algebraic software GAP [19].

The paper is organized as follows: Sect. 2 gives a short background on the synthesis of reversible circuit problem and shows the reduction the problem to permutation group. Sect. 3 shows the experimental results of integrating irreversible Boolean operators in a single 3-bit reversible circuit. The paper ends up with a summary and conclusion in Sect. 4.

II. Background

This section will review the basic definitions of reversible circuits, quantum cost of reversible circuits and the relationship between reversible logic circuits and permutation group theory.

2.1 BASIC DEFINITIONS

Definition 1: An n-input n-output Boolean function is reversible ($n \times n$ function) if it maps each input vector to a unique output vector, i.e. a one-to-one, onto function (bijection). There are 2^{n} ! reversible $n \times n$ Boolean functions. For $n=3$, there are 403203 -in/out reversible functions.
Definition 2: A set of reversible gates that can be used to build a reversible circuit is called a gate library L.
Definition 3: A universal reversible gate library L_{n} is a set of reversible gates such that a cascading of gates in L_{n} can be used to synthesize any reversible circuit with n-in/out [16].

Definition 4: Let a finite set $A=\left\{1,2, \ldots, 2^{n}\right\}$ and a bijection $\delta: A \rightarrow A$, then δ can be written as,

$$
\left(\begin{array}{ccccc}
1 & 2 & 3 & \ldots & n \tag{1}\\
\delta(1) & \delta(2) & \delta(3) & \ldots & \delta\left(2^{n}\right)
\end{array}\right)
$$

i.e. δ is a permutation of A. Let A be an ordered set, then the top row can be eliminated and δ can be written as,

$$
\begin{equation*}
\left(\delta(1), \delta(2), \delta(3), \ldots, \delta\left(2^{n}\right)\right) \tag{2}
\end{equation*}
$$

Any reversible circuit with $\mathrm{n}-\mathrm{in} /$ out can be considered as a permutation δ and (2) is called the specification of this reversible circuit.

The set of all permutations on A forms a symmetric group on A under composition of mappings, denoted by $S_{2^{n}}$ [20]. A permutation group G is a subgroup of the symmetric group $S_{2^{n}}$ [20]. A universal reversible gate library L_{n} is called the generators of the group. Another important notation of a permutation is the product of disjoint cycles [20]. For example, $\binom{1,2,3,4,5,6,7,8}{1,2,4,3,7,6,8,5}$ will be written as $(3,4)(5,7,8)$. The identity mapping "()" is called the unit element in a permutation group.

2.2 Reversible Circuits

The $C^{n} N O T$ gate is a reversible gate that can be used to build any n - $\mathrm{in} /$ out reversible circuits. It is defined as shown in Fig.1.

$C^{n} \mathrm{NOT}$
Figure 1: $C^{n} N O T$ gate. The control bit line is denoted by \bullet, and the target bit line is denoted by \oplus.
The action of C^{n} NOT gate is defined as follows, if the control bit lines are set to 1 then the target bit line is flipped, otherwise the target bit line is left unchanged [5]. Some special cases of the $C^{n} N O T$ gate are defined as follows, $C^{1} N O T$ gate with no control bit is called NOT gate. $C^{2} N O T$ with one control bit is called CNOT gate. $C^{3} N O T$ with two control bits is called Toffoli gate. For the sake of readability $C^{1} N O T, C^{2} N O T$ and $C^{3} N O T$ will be written shortly as N, C and T respectively where the control and/or target bits will be shown in the subscript of the gate and the total number of bits will be shown in the superscript [9].

The NOT (N) gate acts on a 1-bit and it is defined as follows, it flips the input bit unconditionally. For n-in/out reversible circuits, there are n possible N gates. There are 3 possible N gates as shown in Fig.2.

Figure 2: The 3 possible N gates for 3-bit reversible circuits.

$$
\begin{align*}
& N_{1}^{3}:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1} \oplus 1, x_{2}, x_{3}\right) \equiv(1,5)(2,6)(3,7)(4,8), \\
& N_{2}^{3}:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}, x_{2} \oplus 1, x_{3}\right) \equiv(1,3)(2,4)(5,7)(6,8), \tag{3}\\
& N_{3}^{3}:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}, x_{2}, x_{3} \oplus 1\right) \equiv(1,2)(3,4)(5,6)(7,8) .
\end{align*}
$$

The Feynman (C) gate acts on two-bits and it is defined as follows, if the control bit is set to 1 then the target bit line is flipped. There are 6 possible C gates for the 3 -in/out reversible circuits as shown in Fig.3.

Figure 3: The 6 possible C gates for 3-bit reversible circuits.

$$
\begin{align*}
& C_{12}^{3}:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}, x_{2} \oplus x_{1}, x_{3}\right) \equiv(5,7)(6,8), \\
& C_{13}^{3}:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}, x_{2}, x_{3} \oplus x_{1}\right) \equiv(5,6)(7,8), \\
& C_{23}^{3}:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}, x_{2}, x_{3} \oplus x_{2}\right) \equiv(3,4)(7,8), \\
& C_{21}^{3}:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1} \oplus x_{2}, x_{2}, x_{3}\right) \equiv(3,7)(4,8), \tag{4}\\
& C_{33}^{3}:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}, x_{2} \oplus x_{3}, x_{3}\right) \equiv(2,4)(6,8), \\
& C_{31}^{3}:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1} \oplus x_{3}, x_{2}, x_{3}\right) \equiv(2,6)(4,8) .
\end{align*}
$$

The Toffile $\left(T^{3}\right)$ gate acts on three-bits and it is defined as follows, if the two control bits are set to 1 then the third target bit line is flipped. There are three possible T^{3} gates for the 3 -in/out reversible circuits as shown in Fig. 4.

Figure 4: The 3 possible Toffoli (T) gates for 3-bit reversible circuits.

$$
\begin{align*}
& T_{123}^{3}:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}, x_{2}, x_{3} \oplus x_{1} x_{2}\right) \equiv(7,8), \\
& T_{132}^{3}:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}, x_{2} \oplus x_{1} x_{3}, x_{3}\right) \equiv(6,8), \tag{5}\\
& T_{321}^{3}:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1} \oplus x_{2} x_{3}, x_{2}, x_{3}\right) \equiv(4,8) .
\end{align*}
$$

The M^{3} gate combines the action of the three gates N, C and T^{3} andit acts on arbitrary 3-bits x_{i}, x_{j} and x_{k} in any order [18]. For 3-bit reversible circuits built using M-gate library, there are six possible M^{3} gates as shown in Fig.5, which perform as follows:

$$
\begin{align*}
M_{i, j, k}^{3}: y_{i} & =x_{i} \oplus\left(x_{k} \oplus x_{j}\right), \\
y_{j} & =\left(x_{j} \oplus 1\right) \oplus\left(x_{k} \oplus x_{j}\right) \cdot\left(x_{i} \oplus\left(x_{k} \oplus x_{j}\right)\right), \\
y_{k} & =x_{k} \oplus x_{j}, \\
M_{123}^{3}:\left(x_{1}, x_{2}, x_{3}\right) & \rightarrow(1,3,8,5,7,2,6,4), \\
M_{132}^{3}:\left(x_{1}, x_{2}, x_{3}\right) & \rightarrow(1,2,8,5,6,3,7,4), \\
M_{213}^{3}:\left(x_{1}, x_{2}, x_{3}\right) & \rightarrow(1,5,8,3,7,2,4,6), \\
M_{231}^{3}:\left(x_{1}, x_{2}, x_{3}\right) & \rightarrow(1,2,8,3,4,5,7,6), \tag{6}\\
M_{312}^{3}:\left(x_{1}, x_{2}, x_{3}\right) & \rightarrow(1,5,8,2,6,3,4,7), \\
M_{321}^{3}:\left(x_{1}, x_{2}, x_{3}\right) & \rightarrow(1,3,8,2,4,5,6,7) .
\end{align*}
$$

Figure 5: The 6 possible M^{3} gates for 3-bit reversible circuits.

2.3 Quantum Cost

The quantum cost of a reversible circuit refers to optimization measurement as the number of elementary gates required to build the reversible gate [21], i.e. the number of 2 -qubit gates used in its implementation as a quantum circuit. In this paper, the cost of N gate is equal zero [15], and the cost of any 2qubit gate is 1 and the quantum cost of M gate is equal 4 [18] as shown in Fig.6. The gate $\left[C_{23} v_{32}\right]$, which is merging gate between C_{23} and v_{32} in order, as shown in Fig.7. When implementing a reversible circuit, there are four elementary quantum gates that will be used: N gate, C gate, Controlled- $V(v)$ and Controlled- $V^{+}(u)$ gates, where $v u=u v=I, v v=u u=N$, and I is the identity gate [19].

Figure 6: Decomposition of M^{3} gate as 5 elementary gates (one of them with cost zero).

Figure 7: The circuit representation for the decomposition [$C_{23} v_{32}$], of gate [17].
The N gate library added to the M^{3} gate library to form a new library called $N M^{3}$ which is also universal [18]. The main $N M^{3}$ library consists of nine gates (generators) as shown in Fig.8.

Figure 8: The main $N M^{3}$ library consist of 9 gates (generators)

III. Experimental Results

This section shows that if a set of Boolean operators can be integrated by an equivalent permutation that has a cycle representation, then the set of Boolean operators can be realized by a 3-bits reversible circuit based on $N M^{3}$ library.This gives concrete realizations for multiple families of Boolean functions such as $\operatorname{AND}\left(x_{1} \cdot x_{2}\right), \operatorname{OR}\left(x_{1}+x_{2}\right), \operatorname{NOT}\left(\overline{x_{1}}\right), \operatorname{XOR}\left(x_{1} \oplus x_{2}\right), \operatorname{NAND}\left(\overline{x_{1} \cdot x_{2}}\right), \operatorname{NOR}\left(\overline{x_{1}+x_{2}}\right)$. For the sake of readability, this will be written shortly as $A N D, O R, N O T, X O R, N A N D$ and NOR respectively.

Among 20 different combinations, there exist 8 basic possible combinations of three different irreversible Boolean gates which are $\{\{A N D, O R, N O T\}$, $\{A N D, N O T, X O R\},\{A N D, N O T, N O R\}$, $\{O R, N O T, X O R\},\{O R, N O T, N A N D\},\{N O T, X O R, N A N D\},\{N O T, X O R, N O R\},\{N O T, N A N D, N O R\}\}$ can be integrated by equivalent cyclic permutations as long as the integration maintains the reversibility. Each basic combination of three different irreversible Boolean functions has six possible permutations, and then we have a total of 48 possible combinations of three different irreversible Boolean functions. For example, the reversible circuit to implement the set $\{A N D, N O T, X O R\}$ has six different forms, i.e. $(X O R, N O T, A N D)$ means that the first output line will be $\operatorname{XOR}\left(x_{1} \oplus x_{2}\right)$, the second output line will be $\operatorname{NOT}\left(\overline{x_{1}}\right)$ and the third line will be $\operatorname{AND}\left(x_{1} \cdot x_{2}\right)$ which is different from ($A N D, N O T, X O R$) which means that the first output line will be $\operatorname{AND}\left(x_{1} \cdot x_{2}\right)$, the second output line be $\operatorname{NOT}\left(\overline{x_{1}}\right)$ and the third output line will be $\operatorname{XOR}\left(x_{1} \oplus x_{2}\right)$.

3.1 Setting the Input to $\left(x_{1}, x_{2}, 0\right)$

This section discusses setting the input to ($x_{1}, x_{2}, 0$), i.e. the third bit of a circuit is initialized to zero. Table. 1 show $N M^{3}$-based reversible circuits with input ($x_{1}, x_{2}, 0$) which are realized the 8 basic possible combinations of three different Boolean operators can be integrated by equivalent cyclic permutations, so that the integration provides the reversibility. For example, the combination of three different irreversible operators $(X O R, N O T, A N D)$ can be integrated by a cyclic permutation equal $(1,3,7,2)$ and can be realized by reversible circuit $\left[M_{123}^{3}, N_{1}^{3}, M_{321}^{3}, M_{123}^{3}\right]$ with minimum cost equal 11 as shown in Fig.9.

Figure 9: The $N M^{3}$-based reversible circuit realizes the combination of ($X O R, N O T, A N D$) with the input

$$
\left(x_{1}, x_{2}, 0\right)
$$

3.2 SETTING THE INPUT TO ($x_{1}, x_{2}, 1$)

This section discusses setting the input to $\left(x_{1}, x_{2}, 1\right)$, i.e. the third bit of a circuit is initialized to one. Table. 2 show $N M^{3}$-based reversible circuits with input ($x_{1}, x_{2}, 1$) which are realized the 8 basic possible combinations of three different Boolean operators can be integrated by equivalent cyclic permutations so the integration keeps the reversibility of the circuit. For example, the combination of three different irreversible Boolean operators $(X O R, N O T, A N D)$ can be integrated by a cyclic permutation equal $(2,3,4,7,8)(5,6)$ and can be realized by reversible circuit $\left[M_{321}^{3}, N_{1}^{3}, M_{312}^{3}, M_{321}^{3}, N_{1}^{3}, M_{321}^{3}\right]$ with minimum cost equal 16 as shown in Fig. 10 .

Figure 10: The $N M^{3}$-based reversible circuit realizes the combination of ($X O R, N O T, A N D$) with the input $\left(x_{1}, x_{2}, 1\right)$.

Table 1: All the possible $N M^{3}$-based reversible circuits' realizations of Boolean operators' combination with $\operatorname{input}\left(x_{1}, x_{2}, 0\right)$.

All-possible Combination	Cyclic permutation	$N M^{3}$-based Reversible circuit	Quantum Cost [18]	Circuit Length
(AND, OR, NOT)	$(1,2)(3,4,5)$	$\left[N_{1}^{3}, M_{213}^{3}, M_{321}^{3}, N_{1}^{3}, M_{213}^{3}, N_{3}^{3}\right]$	11	6
(AND, NOT, OR)	$(1,3,4)(2,5)(6,7)$	$\left[N_{2}^{3}, M_{123}^{3}, M_{123}^{3}, N_{2}^{3}, M_{231}^{3}, N_{2}^{3}, M_{231}^{3}\right]$	15	7
(OR, AND, NOT)	$(1,2)(3,6)$	$\left[M_{132}^{3}, M_{312}^{3}, M_{312}^{3}, M_{312}^{3}, N_{2}^{3}\right]$	15	5
(OR, NOT, AND)	(1,3,7,6)	$\left[M_{213}^{3}, M_{213}^{3}, N_{1}^{3}, M_{312}^{3}, N_{1}^{3}\right]$	11	5
(NOT, AND, OR)	$(1,5,2)(3,6)(4,7)$	$\left[M_{321}^{3}, N_{3}^{3}, M_{321}^{3}, N_{3}^{3}, M_{321}^{3}, M_{321}^{3}, N_{3}^{3}\right]$	15	7
(NOT, OR, AND)	(1,5,3,7,4)	$\left[M_{123}^{3}, N_{2}^{3}, M_{123}^{3}, M_{213}^{3}, N_{2}^{3}, M_{123}^{3}, N_{2}^{3}\right]$	15	7
(AND, NOT, XOR)	$(1,3,4)(2,7,5)$	$\left[M_{123}^{3}, M_{231}^{3}, N_{2}^{3}, M_{231}^{3}, M_{123}^{3}, N_{1}^{3}, N_{2}^{3}\right]$	14	7
(AND, XOR, NOT)	$(1,2)(3,4,7,5)$	$\left[N_{1}^{3}, M_{132}^{3}, N_{1}^{3}, N_{3}^{3}, M_{132}^{3}, N_{1}^{3}, M_{132}^{3}, N_{3}^{3}, M_{132}^{3}, N_{3}^{3}\right]$	16	10
(NOT, AND, XOR)	$(1,5,2)(3,6,7)$	$\left[M_{312}^{3}, N_{3}^{3}, M_{312}^{3}, N_{1}^{3}, M_{312}^{3}, M_{312}^{3}\right]$	16	6
(NOT, XOR, AND)	(1,5,3,7,2)	$\left[M_{312}^{3}, N_{3}^{3}, M_{312}^{3}, N_{3}^{3}, M_{312}^{3}, N_{2}^{3}, M_{312}^{3}, N_{2}^{3}, N_{3}^{3}\right]$	16	9
(XOR, AND, NOT)	$(1,2)(3,6,7)$	$\left[N_{1}^{3}, M_{132}^{3}, M_{231}^{3}, M_{132}^{3}\right]$	11	4
(XOR, NOT, AND)	$(1,3,7,2)$	$\left[M_{123}^{3}, N_{1}^{3}, M_{321}^{3}, M_{123}^{3}\right]$	11	4
(AND, NOT, NOR)	(1,4,7,5)	$\left[M_{213}^{3}, N_{2}^{3}, M_{213}^{3}, N_{1}^{3}, N_{2}^{3}, M_{213}^{3}, N_{3}^{3}\right]$	12	7
(AND, NOR , NOT)	$(1,4,7,5)(2,3)$	$\left[M_{123}^{3}, M_{213}^{3}, M_{213}^{3}, M_{231}^{3}, N_{1}^{3}\right]$	15	9
(NOT, AND, NOR)	(1,6,7,3,5)	$\left[M_{123}^{3}, M_{123}^{3}, M_{213}^{3}, N_{1}^{3}, M_{123}^{3}, N_{1}^{3}\right]$	15	6
(NOT, NOR, AND)	(1,7,2,3,5)	$\left[N_{1}^{3}, M_{132}^{3}, N_{1}^{3}, M_{132}^{3}, M_{312}^{3}, N_{1}^{3}, M_{132}^{3}, N_{1}^{3}\right]$	15	8
(NOR, AND, NOT)	$(1,6,5)(2,7,3$	$\left[M_{132}^{3}, M_{132}^{3}, N_{2}^{3}\right]$	8	3
(NOR, NOT, AND)	$(1,7,2,5)$	$\left[N_{2}^{3}, M_{231}^{3}, M_{231}^{3}, N_{2}^{3}, N_{3}^{3}, M_{231}^{3}, N_{1}^{3}\right]$	12	7
(OR, NOT, XOR)	$(1,3,8)(5,6,7)$	$\left[M_{123}^{3}, N_{1}^{3}, M_{231}^{3}, M_{231}^{3}, N_{1}^{3}, M_{231}^{3}, N_{1}^{3}\right]$	15	7
(OR, XOR, NOT)	$(1,2)(3,8)(5,7)$	$\left[N_{3}^{3}, M_{321}^{3}, M_{213}^{3}, N_{2}^{3}, N_{3}^{3}, M_{213}^{3}\right]$	11	6
(NOT, OR, XOR)	$(1,5,4)(3,8,7)$	$\left[M_{312}^{3}, N_{2}^{3}, N_{3}^{3}, M_{312}^{3}, M_{312}^{3}, M_{312}^{3}, N_{1}^{3}, N_{2}^{3}\right]$	16	8
(NOT, XOR, OR)	$(1,5,4)(2,7)(3,8)$	$\left[N_{1}^{3}, M_{321}^{3}, N_{1}^{3}, N_{3}^{3}, M_{132}^{3}, M_{132}^{3}, N_{1}^{3}, M_{321}^{3}\right]$	15	8
(XOR, OR, NOT)	$(1,2)(3,8,5,7)$	$\left[M_{132}^{3}, N_{1}^{3}, N_{2}^{3}, M_{132}^{3}, N_{1}^{3}, M_{132}^{3}, M_{312}^{3}, N_{1}^{3}\right]$	15	8
(XOR, NOT, OR)	$(1,3,8)(2,7)(5,6)$	$\left[M_{132}^{3}, M_{312}^{3}, N_{1}^{3}, N_{2}^{3}, N_{3}^{3}\right]$	7	5
(OR, NOT, NAND)	$(1,4)(3,8)(5,6,7)$	$\left[N_{1}^{3}, M_{123}^{3}, M_{123}^{3}, N_{2}^{3}, M_{231}^{3}, N_{2}^{3}, M_{231}^{3}, N_{1}^{3}, N_{2}^{3}\right]$	15	9
(OR, NAND, NOT)	$(1,4)(3,8)(5,7)$	$\left[N_{1}^{3}, N_{2}^{3}, M_{123}^{3}, M_{123}^{3}, N_{3}^{3}, M_{123}^{3}, N_{1}^{3}, N_{3}^{3}\right]$	12	8
(NOT, OR, NAND)	$(1,6)(3,8,7)(4,5)$	$\left[N_{1}^{3}, M_{123}^{3}, M_{231}^{3}, N_{1}^{3}, N_{2}^{3}, M_{231}^{3}, N_{2}^{3}, M_{123}^{3}, N_{1}^{3}\right]$	14	9
(NOT, NAND, OR)	$(1,7,2)(3,8)(4,5)$	$\left[M_{132}^{3}, N_{1}^{3}, N_{3}^{3}, M_{132}^{3}, N_{1}^{3}, N_{3}^{3}, M_{132}^{3}, M_{132}^{3}, N_{3}^{3}\right]$	16	9
(NAND, OR, NOT)	$(1,6)(3,8,5,7)$	$\left[N_{1}^{3}, M_{123}^{3}, N_{2}^{3}, M_{213}^{3}, N_{2}^{3}\right]$	7	5
(NAND, NOT, OR)	$(1,7,2)(3,8)(5,6)$	$\left[N_{2}^{3}, M_{123}^{3}, N_{1}^{3}, M_{132}^{3}, N_{1}^{3}, N_{2}^{3}\right]$	8	6
(NOT,XOR, NAND)	$(1,6,7)(3,8)(4,5)$	$\left[N_{3}^{3}, M_{321}^{3}, N_{1}^{3}, N_{3}^{3}, M_{321}^{3}, N_{1}^{3}, N_{3}^{3}, M_{321}^{3}, N_{3}^{3}, M_{321}^{3}, N_{1}^{3}\right]$	16	11
(NOT, NAND, XOR)	$(1,7)(3,8)(4,5)$	$\left[N_{1}^{3}, M_{123}^{3}, N_{1}^{3}, N_{2}^{3}, M_{213}^{3}, N_{1}^{3}, N_{2}^{3}, M_{213}^{3}\right]$	12	8
(XOR, NOT, NAND)	$(1,4,7)(3,8)(5,6)$	$\left[N_{1}^{3}, N_{2}^{3}, M_{123}^{3}, N_{1}^{3}, M_{312}^{3}, N_{2}^{3}, M_{123}^{3}, M_{123}^{3}, N_{1}^{3}\right]$	15	9
(XOR, NAND, NOT)	$(1,4,5,7)(3,8)$	$\left[N_{2}^{3}, M_{213}^{3}, M_{312}^{3}, M_{312}^{3}, N_{2}^{3}, M_{213}^{3}, N_{2}^{3}\right]$	14	7
(NAND, NOT,XOR)	$(1,7)(3,8)(5,6)$	$\left[N_{3}^{3}, M_{231}^{3}, N_{3}^{3}, M_{231}^{3}, N_{3}^{3}, M_{231}^{3}\right]$	12	6
(NAND, XOR,NOT)	$(1,6,5,7)(3,8)$	$\left[N_{3}^{3}, M_{123}^{3}, M_{123}^{3}, N_{3}^{3}, M_{123}^{3}, N_{3}^{3}, M_{231}^{3}\right]$	15	7
(NOT,XOR,NOR)	(1,6,5,3,7)	$\left[M_{123}^{3}, M_{123}^{3}, M_{213}^{3}, M_{123}^{3}, N_{2}^{3}\right]$	15	5
(NOT, NOR,XOR)	$(1,7)(2,5)(3,6)$	$\left[M_{213}^{3}, M_{132}^{3}, N_{2}^{3}, M_{132}^{3}, N_{2}^{3}\right]$	11	5
(XOR, NOT, NOR)	$(1,4,3,7)$	$\left[M_{213}^{3}, M_{231}^{3}, N_{3}^{3}, M_{213}^{3}, N_{3}^{3}\right]$	11	5
(XOR, NOR, NOT)	$(1,4,7)(3,6)$	$\left[N_{2}^{3}, M_{312}^{3}, N_{2}^{3}, M_{123}^{3}, M_{123}^{3}\right]$	11	5
(NOR, NOT, XOR)	$(1,7)(2,5)(3,4)$	$\left[N_{2}^{3}, M_{231}^{3}, M_{231}^{3}, N_{3}^{3}, M_{231}^{3}, N_{1}^{3}, N_{2}^{3}\right]$	12	7
(NOR, XOR, NOT)	$(1,6,7)(3,4,5)$	$\left[N_{1}^{3}, M_{132}^{3}, N_{1}^{3}, M_{132}^{3}, M_{132}^{3}, N_{1}^{3}, M_{132}^{3}, N_{1}^{3}\right]$	16	8
(NOT,NAND, NOR)	(1,8,5,3,7)	$\left[N_{2}^{3}, M_{132}^{3}, N_{1}^{3}, M_{132}^{3}, M_{312}^{3}, N_{1}^{3}, M_{132}^{3}, N_{2}^{3}\right]$	15	8
(NOT,NOR, NAND)	$(1,8,7)(2,5)(3,6)$	$\left[N_{1}^{3}, M_{123}^{3}, N_{1}^{3}, M_{213}^{3}, M_{123}^{3}, N_{1}^{3}, M_{123}^{3}, N_{1}^{3}\right]$	15	8
(NAND,NOT, NOR)	$(1,8,3,7)$	$\left[N_{3}^{3}, M_{231}^{3}, N_{3}^{3}, M_{231}^{3}, N_{2}^{3}, N_{3}^{3}, M_{231}^{3}, N_{2}^{3}\right]$	12	8
(NAND,NOR, NOT)	$(1,8,7)(3,6)$	$\left[N_{2}^{3}, M_{213}^{3}, M_{213}^{3}, M_{213}^{3}, N_{2}^{3}, M_{213}^{3}, M_{213}^{3}, N_{2}^{3}\right]$	20	8
(NOR,NOT, NAND)	$(1,8,7)(2,5)(3,4)$	$\left[N_{1}^{3}, M_{123}^{3}, N_{1}^{3}, M_{123}^{3}\right]$	8	4
(NOR,NAND, NOT)	$(1,8,7)(3,4,5)$	$\left[M_{123}^{3}, N_{1}^{3}, M_{321}^{3}, N_{1}^{3}, M_{321}^{3}, M_{123}^{3}, N_{1}^{3}\right]$	14	7

Table 2: All the possible $N M^{3}$-based reversible circuits' realizations of Boolean operators'combination with $\operatorname{input}\left(x_{1}, x_{2}, 1\right)$.

All-possible Combination	Cyclic permutation	$N M^{3}$-based Reversible circuit	$\begin{aligned} & \text { Quantum } \\ & \text { Cost [18] } \end{aligned}$	Circuit Length
(AND, OR, NOT)	$(3,6)(7,8)$	$\left[M_{312}^{3}, N_{2}^{3}, M_{123}^{3}, M_{123}^{3}, M_{213}^{3}\right]$	15	5
(AND, NOT, OR)	$(2,3,8,6)$	$\left[N_{1}^{3}, M_{213}^{3}, N_{1}^{3}, \mathrm{~N}_{2}^{3}, M_{213}^{3}, N_{1}^{3}, N_{2}^{3}, M_{231}^{3}\right]$	12	8
(OR, AND, NOT)	$(4,6,5)(7,8)$	$\left[N_{1}^{3}, M_{213}^{3}, M_{321}^{3}, N_{1}^{3}, M_{213}^{3}\right]$	11	5
(OR, NOT, AND)	$(2,3)(4,7)(5,8,6)$	$\left[M_{123}^{3}, M_{123}^{3}, N_{2}^{3}, M_{231}^{3}, N_{1}^{3}, M_{231}^{3}, N_{1}^{3}, N_{2}^{3}\right]$	15	8
(NOT, AND, OR)	(2,5,8,4,6)	$\left[M_{123}^{3}, M_{231}^{3}, M_{321}^{3}, N_{2}^{3}, M_{312}^{3}\right]$	15	5
(NOT, OR, AND)	$(2,5)(3,6)(4,7,8)$	$\left[M_{123}^{3}, M_{312}^{3}, M_{132}^{3}, M_{312}^{3}, N_{1}^{3}\right]$	15	5
(AND, NOT, XOR)	$(2,3,6)(5,8)$	$\left[M_{312}^{3}, N_{2}^{3}, M_{213}^{3}, N_{2}^{3}, M_{123}^{3}\right]$	11	5
(AND, XOR , NOT)	$(3,6)(5,8)$	$\left[N_{3}^{3}, M_{123}^{3}, M_{321}^{3}, N_{2}^{3}, M_{123}^{3}\right]$	11	5
(NOT, AND, XOR)	$(2,5,4,6)(3,8)$	$\left[N_{1}^{3}, M_{231}^{3}, M_{231}^{3}, M_{321}^{3}, M_{321}^{3}\right]$	15	5
(NOT, XOR, AND)	$(2,5,4,7,8)(3,6)$	$\left[N_{1}^{3}, N_{2}^{3}, M_{123}^{3}, N_{1}^{3}, M_{312}^{3}, M_{312}^{3}, N_{2}^{3}, N_{3}^{3}\right]$	11	8
(XOR, AND, NOT)	$(3,8)(4,6,5)$	$\left[N_{3}^{3}, M_{123}^{3}, N_{3}^{3}, M_{312}^{3}, N_{3}^{3}, M_{312}^{3}\right]$	11	6
(XOR, NOT, AND)	$(2,3,4,7,8)(5,6)$	$\left[M_{321}^{3}, N_{1}^{3}, M_{312}^{3}, M_{321}^{3}, N_{1}^{3}, M_{321}^{3}\right]$	16	6
(AND, NOT, NOR)	$(1,6)(2,4,3)(5,8)$	$\left[N_{3}^{3}, M_{321}^{3}, M_{321}^{3}, M_{231}^{3}, M_{231}^{3}\right]$	15	5
(AND, NOR , NOT)	$(1,6)(2,4)(5,8)$	$\left[N_{2}^{3}, M_{123}^{3}, N_{2}^{3}, M_{123}^{3}, N_{2}^{3}, M_{123}^{3}\right]$	12	6
(NOT, AND, NOR)	$(1,2,6)(3,8)(4,5)$	$\left[N_{1}^{3}, M_{132}^{3}, M_{321}^{3}, N_{1}^{3}, M_{321}^{3}, M_{321}^{3}\right]$	15	6
(NOT, NOR, AND)	$(1,4,2,6)(3,8)$	$\left[N_{1}^{3}, M_{132}^{3}, N_{1}^{3}, M_{132}^{3}, N_{1}^{3}, N_{3}^{3}, M_{132}^{3}, M_{132}^{3}, N_{1}^{3}, N_{2}^{3}\right]$	16	10
(NOR, AND, NOT)	$(1,6)(2,7,8)(4,5)$	$\left[M_{123}^{3}, M_{213}^{3}, N_{1}^{3}, N_{3}^{3}\right]$	7	4
(NOR, NOT, AND)	$(1,6)(2,7,8)(3,4)$	$\left[N_{1}^{3}, N_{3}^{3}, M_{123}^{3}, N_{1}^{3}, M_{123}^{3}, N_{3}^{3}\right]$	8	6
(OR, NOT, XOR)	$(2,3)(4,8,5)$	$\left[M_{312}^{3}, N_{1}^{3}, N_{2}^{3}, M_{213}^{3}, N_{2}^{3}, M_{123}^{3}, N_{1}^{3}, N_{2}^{3}\right]$	11	8
(OR, XOR, NOT)	$(4,8,5)(6,7)$	$\left[M_{213}^{3}, N_{2}^{3}, N_{3}^{3}, M_{312}^{3}, N_{2}^{3}, M_{123}^{3}\right]$	11	6
(NOT, OR, XOR)	$(2,5)(3,6,4,8)$	$\left[N_{1}^{3}, N_{2}^{3}, M_{132}^{3}, N_{2}^{3}, M_{132}^{3}, M_{321}^{3}, N_{2}^{3}, M_{321}^{3}, N_{1}^{3}\right]$	15	9
(NOT, XOR, OR)	$(2,5,6,4,8)$	$\left[N_{2}^{3}, M_{123}^{3}, M_{312}^{3}, N_{2}^{3}, M_{312}^{3}, M_{312}^{3}\right]$	15	6
(XOR, OR, NOT)	$(3,4,8)(6,7)$	$\left[N_{1}^{3}, M_{213}^{3}, M_{213}^{3}, M_{213}^{3}, N_{1}^{3}, N_{2}^{3}\right]$	12	6
(XOR, NOT, OR)	(2,3,4,8)	$\left[N_{1}^{3}, M_{213}^{3}, N_{1}^{3}, N_{2}^{3}, M_{213}^{3}, N_{1}^{3}, M_{213}^{3}, N_{2}^{3}\right]$	12	8
(OR, NOT, NAND)	$(2,4,8,5)$	$\left[N_{2}^{3}, M_{213}^{3}, N_{1}^{3}, N_{2}^{3}, M_{213}^{3}, N_{1}^{3}, N_{2}^{3}, M_{231}^{3}, N_{1}^{3}, N_{2}^{3}\right]$	12	10
(OR, NAND, NOT)	$(2,4,8,5)(6,7)$	$\left[N_{1}^{3}, N_{2}^{3}, M_{123}^{3}, M_{312}^{3}, N_{1}^{3}, M_{123}^{3}, N_{2}^{3}, M_{123}^{3}, N_{1}^{3}\right]$	15	9
(NOT, OR, NAND)	(2,6,4,8,3)	$\left[N_{2}^{3}, M_{132}^{3}, N_{1}^{3}, M_{213}^{3}, N_{2}^{3}, M_{132}^{3}, N_{2}^{3}, M_{132}^{3}, N_{1}^{3}\right]$	15	9
(NOT, NAND, OR)	(2,7,6,4,8)	$\left[N_{1}^{3}, M_{123}^{3}, N_{2}^{3}, M_{213}^{3}, M_{213}^{3}, N_{2}^{3}, M_{213}^{3}, N_{1}^{3}\right]$	15	8
(NAND, OR, NOT)	$(2,6,7)(3,4,8)$	$\left[N_{1}^{3}, M_{132}^{3}, N_{2}^{3}, M_{132}^{3}, N_{1}^{3}\right]$	8	5
(NAND, NOT, OR)	(2,7,4,8)	$\left[M_{231}^{3}, N_{3}^{3}, M_{231}^{3}, N_{2}^{3}, N_{3}^{3}, M_{231}^{3}, N_{2}^{3}, N_{3}^{3}\right]$	12	8
(NOT, XOR, NAND)	(1,2,6,4,8)	$\left[N_{3}^{3}, M_{312}^{3}, N_{3}^{3}, M_{312}^{3}, N_{3}^{3}, M_{312}^{3}, N_{2}^{3}, M_{312}^{3}, N_{2}^{3}\right]$	16	9
(NOT, NAND, XOR)	$(1,6,4,8)(2,7)$	$\left[M_{123}^{3}, N_{2}^{3}, M_{231}^{3}, N_{3}^{3}, M_{312}^{3}, N_{2}^{3}, M_{231}^{3}\right]$	14	7
(XOR, NOT, NAND)	$(1,2,4,8)$	$\left[N_{3}^{3}, M_{123}^{3}, N_{1}^{3}, M_{321}^{3}, M_{123}^{3}, N_{3}^{3}\right]$	11	6
(XOR, NAND, NOT)	$(1,2,4,8)(6,7)$	$\left[N_{1}^{3}, M_{123}^{3}, N_{1}^{3}, M_{213}^{3}, N_{1}^{3}, M_{213}^{3}, M_{213}^{3}\right]$	15	7
(NAND, NOT, XOR)	$(1,4,8)(2,7)$	$\left[M_{312}^{3}, N_{1}^{3}, M_{312}^{3}, N_{2}^{3}, M_{123}^{3}, N_{2}^{3}\right]$	11	6
(NAND, XOR, NOT)	$(1,4,8)(2,6,7)$	$\left[N_{3}^{3}, M_{123}^{3}, N_{3}^{3}, M_{312}^{3}, M_{123}^{3}, N_{3}^{3}, M_{312}^{3}, N_{3}^{3}\right]$	15	8
(NOT, XOR, NOR)	$(1,8)(2,6,3)(4,7)$	$\left[N_{1}^{3}, N_{3}^{3}, M_{321}^{3}, M_{132}^{3}, N_{3}^{3}, M_{132}^{3}, N_{1}^{3}, M_{321}^{3}\right]$	14	8
(NOT, NOR, XOR)	$(1,8)(2,7,4,6)$	$\left[N_{1}^{3}, N_{3}^{3}, M_{312}^{3}, M_{231}^{3}, N_{1}^{3}, N_{3}^{3}, M_{123}^{3}, M_{231}^{3}\right]$	14	8
(XOR,NOT, NOR)	$(1,8)(2,4,7)(5,6)$	$\left[N_{3}^{3}, M_{132}^{3}, M_{312}^{3}, N_{1}^{3}, N_{2}^{3}\right]$	7	5
(XOR, NOR, NOT)	$(1,8)(2,4,6,5)$	$\left[N_{2}^{3}, M_{213}^{3}, M_{213}^{3}, N_{1}^{3}, M_{213}^{3}, M_{213}^{3}, N_{1}^{3}, M_{213}^{3}, M_{213}^{3}\right]$	24	9
(NOR,NOT,XOR)	$(1,8)(2,7,6)$	$\left[M_{312}^{3}, M_{312}^{3}, N_{2}^{3}, M_{123}^{3}, N_{1}^{3}\right]$	11	5
(NOR, XOR, NOT)	$(1,8)(2,6,3)$	$\left[N_{1}^{3}, M_{213}^{3}, M_{213}^{3}, N_{2}^{3}, M_{132}^{3}, N_{1}^{3}, N_{2}^{3}\right]$	11	7
(NOT, NAND, NOR)	$(1,2,8)(3,6)(4,7)$	$\left[N_{3}^{3}, M_{132}^{3}, N_{1}^{3}, N_{3}^{3}, M_{312}^{3}, N_{1}^{3}, N_{3}^{3}, M_{132}^{3}, M_{132}^{3}\right]$	16	9
(NOT, NOR, NAND)	(1,4,6,2,8)	$\left[N_{2}^{3}, M_{123}^{3}, N_{2}^{3}, M_{213}^{3}, M_{213}^{3}, N_{2}^{3}, M_{213}^{3}, N_{2}^{3}\right]$	15	8
(NAND, NOT, NOR)	$(1,2,8)(4,7)(5,6)$	$\left[M_{123}^{3}, N_{1}^{3}, N_{3}^{3}, M_{123}^{3}, N_{1}^{3}, N_{3}^{3}\right]$	8	6
(NAND, NOR, NOT)	$(1,2,8)(4,6,5)$	$\left[M_{123}^{3}, M_{321}^{3}, M_{123}^{3}, M_{321}^{3}, N_{1}^{3}\right]$	14	5
(NOR, NOT, NAND)	(1,6,2,8)	$\left[N_{1}^{3}, M_{213}^{3}, N_{1}^{3}, M_{231}^{3}, N_{1}^{3}, M_{231}^{3}, N_{1}^{3}\right]$	11	7
(NOR, NAND, NOT)	$(1,2,8)(3,6)$	$\left[M_{312}^{3}, M_{312}^{3}, N_{1}^{3}, N_{3}^{3}, M_{312}^{3}, M_{312}^{3}, N_{3}^{3}, M_{312}^{3}\right.$]	20	8

3.3 COMPARISON BETWEEN SETTING THE INPUTS $\left(x_{1}, x_{2}, 0\right)$ AND $\left(x_{1}, x_{2}, 1\right)$

Table 3 shows that the comparison between the possible combinations of Boolean operators which realize the $N M^{3}$-based reversible circuits with minimum cost and length while the inputs $\left(x_{1}, x_{2}, 0\right)$ and $\left(x_{1}, x_{2}, 1\right)$. Initializing the input vector to $\left(x_{1}, x_{2}, 0\right)$ gives better results with respect to the average quantum cost, having cost of 9.25 and the average length, having length of 4.62 as shown in Table.3.

Table 3: Comparison between the possible combinations of Boolean operators which realize the $N M^{3}$-based reversible circuits' with minimum cost and length while the inputs ($x_{1}, x_{2}, 0$) and ($x_{1}, x_{2}, 1$).

Input ($x_{1}, x_{2}, 0$)			
Basic Combinations	$N M^{3}$-based Reversible Circuits	Mini-Cost	Length
(OR, NOT,AND)	$\left[M_{213}^{3}, M_{213}^{3}, N_{1}^{3}, M_{312}^{3}, N_{1}^{3}\right]$	11	5
(XOR,NOT,AND)	$\left[M_{123}^{3}, N_{1}^{3}, M_{321}^{3}, M_{123}^{3}\right]$	11	4
(NOR,AND,NOT)	$\left[M_{132}^{3}, M_{132}^{3}, N_{2}^{3}\right]$	7	3
(XOR, NOT,OR)	$\left[M_{132}^{3}, M_{312}^{3}, N_{1}^{3}, N_{2}^{3}, N_{3}^{3}\right]$	7	5
(NAND,OR,NOT)	[$\left.N_{1}^{3}, M_{123}^{3}, N_{2}^{3}, M_{213}^{3}, N_{2}^{3}\right]$	7	5
(NAND,NOT,XOR)	$\left[N_{3}^{3}, M_{231}^{3}, N_{3}^{3}, M_{231}^{3}, N_{3}^{3}, M_{231}^{3}\right]$	12	6
(NOT, NOR, XOR)	$\left[M_{213}^{3}, M_{132}^{3}, N_{2}^{3}, M_{132}^{3}, N_{2}^{3}\right]$	11	5
(NOR,NOT,NAND)	$\left[N_{1}^{3}, M_{123}^{3}, N_{1}^{3}, M_{123}^{3}\right]$	8	4
Average		9.25	4.62
Input ($x_{1}, x_{2}, 1$)			
Basic Combinations	$N M^{3}$-based Reversible Circuits	Mini-Cost	Length
(OR, AND, NOT)	$\left[N_{1}^{3}, M_{213}^{3}, M_{321}^{3}, N_{1}^{3}, M_{213}^{3}\right]$	11	5
(XOR, NOT,AND)	$\left[M_{321}^{3}, N_{1}^{3}, M_{312}^{3}, M_{321}^{3}, N_{1}^{3}, M_{321}^{3}\right]$	16	6
(NOR, AND,NOT)	$\left[\mathrm{M}_{123}^{3}, \mathrm{M}_{213}^{3}, \mathrm{~N}_{1}^{3}, \mathrm{~N}_{3}^{3}\right]$	1	4
(OR, XOR, NOT)	$\left[\mathrm{M}_{213}^{3}, \mathrm{~N}_{2}^{3}, \mathrm{~N}_{3}^{3}, \mathrm{M}_{312}^{3}, \mathrm{~N}_{2}^{3}, \mathrm{M}_{123}^{3}\right]$	11	6
(NAND, OR, NOT)	$\left[\mathrm{N}_{1}^{3}, \mathrm{M}_{132}^{3}, \mathrm{~N}_{2}^{3}, \mathrm{M}_{132}^{3}, \mathrm{~N}_{1}^{3}\right]$	15	5
(NAND, XOR,NOT)	$\left[N_{3}^{3}, M_{123}^{3}, N_{3}^{3}, M_{312}^{3}, M_{123}^{3}, N_{3}^{3}, M_{312}^{3}, N_{3}^{3}\right]$	15	8
(NOT, NOR, XOR)	$\left[N_{1}^{3}, N_{3}^{3}, M_{312}^{3}, M_{231}^{3}, N_{1}^{3}, N_{3}^{3}, M_{123}^{3}, M_{231}^{3}\right]$	14	8
(NAND, NOT,NOR)	$\left[\mathrm{M}_{123}^{3}, \mathrm{~N}_{1}^{3}, \mathrm{~N}_{3}^{3}, \mathrm{M}_{123}^{3}, \mathrm{~N}_{1}^{3}, \mathrm{~N}_{3}^{3}\right]$	8	6
Average		11.25	5.88

IV. Conclusion

Classical Boolean gates are mainly irreversible and cannot be used directly in the reversible circuits' synthesis. Methods to integrate any three Boolean operators, so that the integration keeps the reversibility, as a $N M^{3}$-based reversible circuit with zero-garbage output have been proposed. It was shown that the order of the Boolean operator in the output vector affects the efficiency of the circuit. There are two ways to initialize the input vectors $\left(x_{1}, x_{2}, 0\right)$ and $\left(x_{1}, x_{2}, 1\right)$. It was shown that setting the input vector to $\left(x_{1}, x_{2}, 0\right)$ of the $N M^{3}$-based reversible circuits gives better results with respect to the average quantum cost, having cost of 9.25 and the average length, having length of 4.62.

References

[1]. C. Bennett, Logical reversibility of computation. IBM Journal of Research and Development, 17(6):525-532 (1973).
[2]. E. Fredkin, and T. Toffoli, Conservative logic, International Journal of Theoretical Physics, 21:219-253 (1982).
[3]. T. Toffoli, Reversible computing, Tech. Memo MIT/LCS/TM-151, MIT Laboratory forComputer Science, Cambridge, MA, 37 pages (1980).
[4]. P.Kerntopf,Synthesis of multipurpose reversible logic gates, Proceedingsof the Euromi-cro Symposium on Digital System Design, pp.259-266 (2002).
[5]. M. Nielsen, and I. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge, United Kingdom (2000).
[6]. A.DeVos, B.Desoete, A.Adamski, P.Pietrzak, M.Sibinski and T.Widerski,Design of reversible logic circuits by means of control gates, In Proceed-ings of the 10th International Workshop on Integrated Circuit Design, Powerand Timing Modeling, Optimization and Simulation, pages 255-264, (2000).
[7]. Y.Huang, X.Duan, Y.Cui , L.J.Lauhon, K.Kim , and C.M.Lieber, Logicgates and computation from assembled nanowire building blocks, Science,vol.294, pp.1313-1316, (2001).
[8]. A. Younes, Tight bounds on the synthesis of 3-bit reversible circuits: NFT library, arXiv:1304.5804v2 (2013).
[9]. M.Osman, A.Younes, and M. H. Fahmy, Integration of irreversible gates in reversible circuits using NCT library, IOSR J. Comput. Eng, 14, 69\{79 (2013).
[10]. A. Younes, Tight Bounds on the Synthesis of 3-bit Reversible Circuits: NFFr Library, J. Circuits SystComput, 23(3) 1450040 (2014).
[11]. R.Montaser, A.Younes, and M.Abdel-Aty, Improving the quantum cost ofNCT-based reversible circuit, Quant. Inf. Process., Springer, 14(2), 325351(2015).
[12]. A. De Vos, B. Raa, and L. Storme, Generating the group of reversible logic gates, Journal of Physics A: Mathematical and General, 35(33): 7063-7078 (2002).
[13]. L. Storme, A. De Vos, and G. Jacobs, Group theoretical aspects of reversible logic gates, Journal of Universal Computer Science,5(5): 307-321 (1999).
[14]. A. De Vos and S. De Baerdemacker, Symmetry groups for the decomposition of reversible computers, quantum computers, and computers in between. Symmetry, 3(2): 305-324 (2011).
[15]. G. Yang, X. Song, W. N.N. Hung, M. A. Perkowski, and C.-J. Seo, Synthesis of reversible circuits with minimal costs, CALCOLO, 45:193-206, (2008).
[16]. A.Younes, On the Universality of n-bit reversible gate libraries,Appl.Math. Inf. Sci., 9(5), 25792588 (2015).
[17]. R.Montaser, A.Younes and M.Abdel-Aty, New designs of universal reversible gate library,J.Quantum Matter,6(1),89-96 (2017).
[18]. M.Osman, A.Younes, G.Ismail and R.Farouk, An improved design of n-bit universal reversible gate library, Int J TheorPhys, Springer, Volume 58, Issue 8, pp 2531-2549 (2019) , https://doi.org/10.1007/s10773-019-04143-2.
[19]. The GAP Group. GAP-Groups, algorithms, and programming, Version4.6.3; 2013. Available: http://www.gap-system.org.
[20]. M.I. Kargapolov, and Ju.I. Merzljakov, Fundamentals of the theory of groups, Berlin: Springer (1979).
[21]. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, Elementary gates for quantum computation, Physical Review A, 52(5):3457-3467 (1995).

Mohamed Osman" Integration of Boolean Operators on Reversible Circuits Using NMLibrary" International Journal of Engineering Science Invention (IJESI), Vol. 08, No. 07, 2019, PP 08-16

