
International Journal of Engineering Science Invention (IJESI)

ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726

www.ijesi.org ||Volume 8 Issue 07 Series. II || July 2019 || PP 49-55

www.ijesi.org 49 | Page

Comparative Study of Frequent Graph Structure Pattern Mining

Algorithm

Y L Patel
1
, Prof. C. K. Bhensdadia

2
 and Dr. A. P. Ganatra

3

1
IT Department, Faculty of Technology, D. D. UniversityCollege Road, Nadiad (Gujarat-India)

2
CE Department, Faculty of Technology, D. D. UniversityCollege Road, Nadiad (Gujarat-India)

3
CE Department, C. S. Patel Inst. of Technology CHARUSAT, Changa (Gujarat-India)

Corresponding Author: Y L Patel

Abstract— Structure base frequent pattern mining andclassification has remained one of the most interesting

and widely use for bioinformatics, chem.-informatics, web content classification like Wikipedia, social

networking, molecular structure classification, protein structure identification...etc. The unknown molecular

structure, Social Networking, Protein Structure classification…etc are highly non sequential structure data and

it depends on many parameters like type of relation between them and property which makes it more interesting

at the same time very difficult to classify dataset. Because of complexity and intrications, the problem has

received attention of many researchers all over the world. As a lot of application dataset are represented in

term of graph structure pattern, software developers experience difficult to classify the frequent graph sub

structure in datasets. Many different types of algorithms have been suggested by researchers’ over the period of

time base on two types one is Apriori base and another is frequent pattern growth base approaches. In the

Apriori-based graph mining method Candidate set generation is still costly especially when there exist a large

number of long patterns In Frequent pattern growth Time is wasted as the only pruning that can be done is on

single items. These approaches have many pitfalls like most of them identify repeated frequent patterns; all

identified frequent patterns are not interesting. This researcher work suggests and provides comparative survey

of different sub graph mining algorithm like Gspan, Subdue, FSM …etc. This Comparative survey can be useful

to identify and select appropriate sub graph mining algorithm for different types of application.

Keywords—Frequent sub graph mining, Isomorphism, Pattern growth, Apriori

--- ----------

Date of Submission: 10-07-2019 Date of acceptance: 28-07-2019

--

I. Introduction
 There are different types of data which can be represented in term of graph structure like web resource,

social networking, molecular structure...etc. To classify structure we require identifying most frequent pattern.

For identification of frequent pattern there are different graph mining techniques like Apriori base technique and

frequent pattern growth base technique. Each technique has some pros and corns regarding performance and

working mechanism. This section provides a generic overview of the process of FSM. Any frequent sub graph

mining process involves 3 aspects, i) graph representation ii) sub graph Enumeration and iii) frequency

counting.

1.1 Graph Representations

 The simplest mechanism whereby a graph structure can be represented is by employing an adjacency

matrix or adjacency list. Using an adjacency matrix the rows and columns represent vertexes, and the

intersection of row i and column j represents a potential edge connecting the vertexes vi and vj . The value held

at intersection < i, j > typically indicates the number of links from vi to vj . However, the use of adjacency

matrices, although straightforward, does not lend itself to isomorphism detection, because a graph can be

represented in many different ways depending on how the vertexes (and edges) are enumerated

Washio&Motoda 2003. With respect to isomorphism testing it is therefore desirable to adopt a consistent

labelling strategy that ensures that any two identical graphs are labelled in the same way regardless of the order

in which vertexes and edges are presented (i.e. a canonical labelling strategy). A canonical labelling strategy

defines a unique code for a given graph.

1.2 Canonical labelling:

 It facilitates isomorphism checking because it ensures that if a pair of graphs is isomorphic, then their

canonical labelling will be identical Kuramochi&Karypis. One simple way of generating a canonical labelling is

to flatten the associated adjacency matrix by concatenating rows or columns to produce a code comprising a list

Comparative Study of Frequent Graph Structure Pattern Mining Algorithm

www.ijesi.org 50 | Page

of integers with a minimum (or maximum) lexicographical ordering imposed. To further reduce the computation

resulting from the permutations of the matrix, canonical labelling are usually compressed, using what is known

as a vertex invariant scheme Read & Corneil, that allows the content of an adjacency matrix to be partitioned

according to the vertex labels. Various canonical labelling schemes have been proposed, some of the more

significant are described in this subsection.

1.3 Minimum DFS Code (M-DFSC):

 There are a number of variants of DFS encodings, but essentially each vertex is given a unique

identifier generated from a DFS traversal of a graph (DFS subscripting). Each constituent edge of the graph in

the DFS code is then represented by a 5-tuple: (i, j, li, le, lj), where i and j are the vertex identifiers, li and lj are

the labels for the corresponding vertexes, and le is the label for the edge connecting the vertexes. Based on the

DFS lexicographic order, the M-DFSC of a graph g can be defined as the canonical labelling of g.

1.4 Canonical Adjacency Matrix (CAM):

 Given an adjacency matrix M of a graph g, an encoding of M can be obtained by the sequence obtained

from concatenating the lower or upper triangular entries of M, including entries on the diagonal. Since different

permutations of the set of vertexes correspond to different adjacency matrices, the canonical (CAM) form of g is

defined as the maximal (or minimal) encoding. The adjacency matrix from which the canonical form is

generated defines the Canonical Adjacency Matrix or CAM Inokuchi et al.; Kuramochi&Karypis ; Huan et al..

II. Sub graph Enumeration
 The current methods for enumerating all the sub graphs might be classified into two categories: one is

the join operation adopted by FSG and AGM and another one is the extension operation. The major concerns for

the join operation are that a single join might produce multiple candidates and that a candidate might be

redundantly proposed by many join operations. The concern for the extension operation is to restrict the nodes

that a newly introduced edge may attach to. Equivalence class based extension is founded on a DFS-LS

representation for trees. Basically, a (k + 1)-sub tree is generated by joining two frequent k-sub trees. The two k

sub trees must be in the same equivalence class. An equivalence class consists of the class prefix encoding, and

a list of members. Each member of the class can be represented as a (l, p) pair, where l is the k-th vertex label

and p is the depth-first position of the k-th vertex’s parent. It is verified, in Zaki , that all potential (k + 1)-sub

trees with the prefix [C] of size (k − 1) can be generated by joining each pair of members of the same equivalent

class [C].Equivalence classes can be based on either prefix or suffix.

III. Frequency Counting
Two Methods are used for graph counting: Embedding lists (EL) and Recomputed embeddings (RE). For graphs

with a single node we store an embedding list of all occurrences of its label in the database. For other graphs a

list is stored of embedding tuples that consist of (1) an index of an embedding tuples in the embedding list of the

predecessor graph and (2) the identifier of a graph in the database and a node in that graph. The frequency of a

structure is determined from the number of different graphs in its embedding list. Embedding lists are quick, but

they do not scale very well to large databases. The other approach is based on maintaining a set of active"

graphs in which occurrences are repeatedly recomputed.

IV. Issues in Graph Mining
 There are different types of issues associated with frequent graph mining Techniques like graph

structure representation issue, Isomorphism of sub graph structure, interestingness of identified frequent

structure associated with graph, scalability in term of graph structure and numbers of graph structures. So that

during design of frequent graph mining algorithm we have to take care about the issues which already we have

in previously proposed solutions.

4.1 Graph Representation

There are different representation techniques like

 Adjacent Matrix, Adjacent List, sequential representation, tries...etc. If we use Adjacent matrix we have

to take care of number of dimension like labelling of graph. Without labelling we can’t remove isomorphism. If

the size of graph is very large then adjacent list and tries required more time complexity to represent in that

graph structure but it is useful to make canonical labelling and DFS code to remove sub graph isomorphic

problem.

Comparative Study of Frequent Graph Structure Pattern Mining Algorithm

www.ijesi.org 51 | Page

4.2 Isomorphism of sub graph structure

 For large scale graph frequent sub graph structure which we identify are not always different. Same sub

graph structure may be identified more than one time so that we have to take care of this type of dummy

structure which are identical and remove this type of isomorphic structure using canonical labelling or lexical

DFS code representation. So that it is required to reduce isomorphism for this type of redundant sub graph

structure.

4.3 Interestingness of frequent sub structure

Figure 1 Unknown Molecular

 For given example if you want to classify unknown molecular in one of three different class. Same sub

structure like CH3 may appear in these three classes. So that it is important to measure interestingness of pattern

base on statistic analysis to find interestingness of pattern. Base on information gain and statistic analysis we

can identify interestingness of frequent sub graph pattern so that it is easy to classify in appropriate class.

.

4.4 Scalability

 Scalability of graph can be measure in term of size of graph structure and in term of numbers of graph

structure. It is also dependent on application like social networking, molecular classification, protein

structure...etc for which graph mining algorithm is developed. Base on that we have to design algorithm for

scalable all type of graph data structure.

4.5 Data Set format

 It is also important to provide mechanism to type cast application source data set in to appropriate data

format conversion like social networking or Wikipedia data source is always in html or xml format so that it is

required to type cast in appropriate format so that user can type cast it.

V. Apriori Base Techniques

5.1 Apriori Base Graph Mining (AGM)

 The mathematical graph theory based approach mines a complete set of sub graphs under mainly

support measure. The initial work is AGM (Apriori-based Graph Mining) system. The basic principle of AGM

is similar to the Apriori algorithm for basket analysis. Starting from frequent graphs where each graph is a single

vertex, the frequent graphs having larger sizes are searched in bottom up manner by generating candidates

having an extra vertex. An edge should be added between the extra vertex and some of the vertices in the

smaller frequent graph when searching for the connected graphs. One graph constitutes one transaction. The

graph structured data is transformed without much computational effort into an adjacency matrix mentioned.

5.1.1 Candidate Generation

 The two indices which are identical to the definitions of support" and confidence" in the basket analysis

are introduced. Definition 8 (Support and Confidence) given a graph Gs, the support of Gs is defined as Given

two induced sub graphs Gb and Gh, the confidence of the association rule Gb => Gh is defined as

 If the value of sup(Gs) is more than a threshold value min sup, Gs is called as a frequent induced sub

graph". Similarly to the Apriori algorithm, the candidate generation of the frequent induced sub graph is made

by the level wise search in terms of the size of the sub graph.

Comparative Study of Frequent Graph Structure Pattern Mining Algorithm

www.ijesi.org 52 | Page

5.1.2 Frequency Calculation

 Frequency of each candidate induced sub graph is counted by scanning the database after generating all

the candidates of frequent induced sub graphs and obtaining their canonical forms. Every transaction graph G in

the database can be represented by an adjacency matrix Xk, but it may not be a normal form in most cases.

Since the candidates of frequent induced sub graphs are normal forms, the normalization must be applied to Xk

of each transaction G to check if the candidates are contained in G. As previously described, the procedure of

the normalization of Xk can derive the normal form of every induced sub graph of G in the intermediate levels.

Thus, the frequency of each candidate is counted based on all normal forms of the induced sub graphs of G.

When the value of the count exceeds the threshold min sup, the sub graph is a frequent induced sub graph. Once

all frequent induced sub graphs are found, the association rules among them whose confidence values are more

than a given confidence threshold are enumerated by using the algorithm similar to the standard basket analysis.

5.2 Frequent Sub Graph Discovery (FSG)

 In developing our frequent sub graph discovery algorithm, we decided to follow the level-by-level

structure of the Apriori algorithm used for finding frequent item sets in market-basket datasets. The motivation

behind this choice is the fact that the level-by-level structure of the Apriori algorithm achieves the highest

amount of pruning In the rest of this section we describe how FSG generates the candidates sub graphs during

each level of the algorithm and how it computes their frequency.

5.2.1Generation

 In the candidate generation phase, we create a set of candidates of size k +1, given frequent k-sub

graphs. Candidate sub graphs of size k+1 are generated by joining two frequent k-sub graphs. In order for two

such frequent k-sub graphs to be eligible for joining they must containthe same (k¡1)-sub graph. We will refer to

this common (k¡1)-sub graph among two k-frequent sub graphs as their core.Unlike the joining of item sets in

which two frequent k-size item sets lead to a unique (k + 1)-size item set, the joining of two sub graphs of size k

can lead to multiple distinct sub graphs of size k + 1. This can happen for the following three reasons. First,

the diff erence between the shared core and the two sub graphs can be a vertex that has the same label in both k-

sub graphs. In this case, the joining of such k-sub graphs will generate two distinct sub graphs of size k + 1. The

pair of graphs G
4

a and G
4
bgenerates two different candidates G

5
aand G

5
b. Second,the core itself may have

multiple automorphisms, and each of them can lead to a different (k + 1)-candidate. In the worst case, when the

core is an unlabeled clique, the number of automorphisms is k!. An example for this case in which the core—a

square of four vertices labelled with a—has four automorphisms resulting in three differentcandidates of size 6.

Because every core has one fewer edge, for a pair of two k-sub graphs to be joined, the number of multiple cores

is bounded by k ¡ 1.

 For each pair of frequent sub graphs, fsg-gen starts by detecting all the cores shared by the two frequent

sub graphs. Then, for each pair of sub graphs and a shared core, fsg-join is called at Line 6 to generate all

possible candidates of size k + 1. Once a candidate is generated, the algorithm first checks if the candidate is

already in C
k+1

. If it is not, then fsg-gen verifies if all its k-sub graphs are frequent. If they are, fsg-join then

inserts the candidate into C
k+1

, otherwise it discards the candidate. Given a pair ofk-sub graphs, G
k
1 and G

k
2, and

a core of size k ¡ 1, first fsg- join determines the two edges, one included only in G
k
1 and the other only in G

k
2

which are not a part of the core. Next, fsg-join generates all the automorphisms of the core. Finally, for each set

of the two edges, the core, and the automorphisms, fsg-join integrates the two sub graphs G
k
1 and G

k
2 into one

candidate of size k + 1.

5.2.2 Frequency Counting

 Once candidate sub graphs have been generated, FSG computes their frequency. The simplest way of

achieving this is for each sub graph to scan each one of the graph transactions in the input dataset and determine

if it is contained or not using sub graph isomorphism. Nonetheless, having to compute this isomorphism is

particularly expensive and this approach is not feasible for large datasets. In the context of frequent item set

discovery by Apriori, the frequency counting is performed substantially faster by building a hash-tree of

candidate item sets and scanning each transaction to determine which of the item sets in the hash-tree it

supports. Developing such an algorithm for frequent sub graphs, however, is challenging as there is no natural

way to build the hash-tree for graphs.

 However, the computational advantages of the TID lists come at the expense of higher memory

requirements. In particular, when FSG is working on finding the frequent patterns of size (k + 1), it needs to

store in memory the TID lists for all frequent patterns of size k. FSG can be easily extended to work in cases

where the amount of available memory is not sufficient for storing the TID lists of a particular level by adopting

a depth-first approach for frequent pattern generation. Starting from a subset of sub graphs of size k without

generating all the rest of size k sub graphs, we can proceed to larger size. In this way, we may not be able to get

Comparative Study of Frequent Graph Structure Pattern Mining Algorithm

www.ijesi.org 53 | Page

the same effect of pruning based on the downward closure property. Nevertheless, it is beneficial in terms of

memory usage because at each phase we keep smaller number of sub graphs and their associated TID lists.

VI. Frequent Pattern Growth Base Technique
 In order to avoid the overhead of apriori algorithms, non-Apriority-based algorithms have been

developed, most of which adopt the pattern-growth methodology, as discussed below. Pattern-growth-based

graph pattern mining algorithms include gSpan by Yan and Han (2002),MoFa by Borgelt andBerthold (2002)

[7], FFSM by Huan et al. (2003), SPIN by Huan et al. (2004), and Gaston by Nijssen andKok (2004). These

algorithms are inspired by PrefixSpan(Pei et al. 2001),TreeMinerV(Zaki 2002), and FREQT (Asai et al. 2002) at

mining sequences and trees, respectively. The pattern-growth mining algorithm extends a frequent graph by

adding a new edge, in every possible position. A potential problem with the edge extension is that the same

graph can be discovered many times. The gSpan algorithm solves this problem by introducing a right-most

extension technique, where the only extensions take place on the right-most path. A right-most path is the

straight path from the starting vertex v0 to the last vertex vn, according to a depth-first search on the graph.

Typical pattern growth algorithms are discussed in the following paragraphs.

6.1 Graph-Based Substructure Pattern Mining (Gspam)

 Approaches for frequent graph-based pattern mining in graph datasets and propose a novel algorithm

called gSpan (graph-based Substructure pattern mining), which discovers frequent substructures without

candidate generation. gSpan builds a new lexicographic order among graphs, and maps each graph to a unique

mini-mum DFS code as its canonical label [6]. Based on this lexicographic order, gSpan adopts the depth first

search strategy to mine frequent connected sub graphs efficiently. Our performance study shows that gSpan

substantially outperforms previous algorithms, sometimes by an order of magnitude.

 GSpan, which targets to reduce or avoid the significant costs mentioned above. If the entire graph

dataset can t in main memory, gSpan can be applied directly; otherwise, one can first perform graph-based data

projection, and then apply gSpan. To the best of our knowledge, gSpan is the algorithm that explores depth first

search (DFS) in frequent sub-graph mining. Two techniques, DFS lexicographic order and minimum DFS code,

are introduced here, which form a novel canonical labelling system to support DFS search. GSpan discovers all

the frequent sub graphs without candidate generation and false positives pruning. It combines the growing and

checking of frequent sub graphs into one procedure, thus accelerates the mining process.

6.1.1 DFS Lexicographic Order

 This section introduces several techniques developed in gSpan, including mapping each graph to a DFS

code (a sequence), building a novel lexicographicordering among these codes, and constructing a search tree

based on this lexicographic order.

6.1.2 DFS Code

 When performing a depth- first search in a graph, we construct a DFS tree. One graph can have several

different DFS trees. For example, graphs in Fig. 2(b)-(d) are isomorphic to that in Fig. 2(a). The thickened edges

in Fig. 2(b)-(d) represent three different DFS trees for the graph in Fig. 2 a. The depth- first discovery of the

vertices forms a linear order. We use subscripts to label this order according to their discovery time. i < j means

vi is discovered before vj. We call vo the root and vn the right most vertex. The straight path from vo to vn is

named the right most path. In fig. 2 b-d three different subscripting are generated for the graph in fig. 2 a.

Fig. 2 Depth First Search Tree

 Let the canonical DFS code to be the smallest code that can be constructed from G (denoted min(G))

Theorem: Given two graphs G and H, they are isomorphic if and only if min(G)=min(H) mining Sub graph

Comparative Study of Frequent Graph Structure Pattern Mining Algorithm

www.ijesi.org 54 | Page

frequent is equivalent mining their corresponding minimum DFS codes Can be done sequentially by pattern

mining algorithms

 Each node represents DFS code. Relations between parents and children. With label set L, DFS Code

Tree contains all possible graphs for this label set Each graph on the n-th level in the DFS Code Tree constrains

n-1 edges. DFS code tree contains minimum DFS codes for all graphs (DFS Code Tree Covering).

 If a graph G is frequent, then any subgraph of G is frequent. If G is not frequent, then any graph which

contains G is not frequent. If a DFS code α is frequent, then every ancestor of α is frequent. If α is not frequent

then every descendant of α is not frequent.

 Some graphs can have more DFS nodes corresponding to it in DFS Code Tree. The first occurrence is

the minimum DFS code. Theorem: If DFS code is not the minimum one, we can Prune the entire sub tree below

this node, and still preserve DFS Code Tree Covering. Pre-order searching of DFS Code Tree guarantees that we

can enumerate all potential frequent sub graphs.

6.2 Graph Sequence Tree extractiON (Gaston)

 In this technique for sub structure searching first path are considered, then paths are transformed to

trees and finally trees are transformed to graphs. It starts with the possibilities of quick starting the search for

frequent structures by integrating a frequent path, tree and graph miner into one algorithm. The main challenge

is how to split up the discovery process into several phases efficiently. The frequency and support of a graph G

in D is defined as per given below.

Feq(G,D) = #{G’ D | G G’}

Support (G,D) = freq(G,D) / |D|

G1 G2 => freq(G1, D) >= freq(G2, D)

 First compare the labels at both ends of the path by comparing the tuple (l(v1), l(e1)) with the tuple

(l(Vn), l(En-1)) lexicographically; if one end is higher than the other, the path without the highest tuple is

considered to be the unique predecessor. For one specific orientation of a path three symmetry variables are

maintained. One for the oriented path called total symmetry, one for front and one for back symmetry. Each of

these variables has one of three values: 0, if the corresponding string is symmetric; -1 if the reverse string of the

current orientation is the lowest; +1, if the string of the current orientation is the lowest.

6.3 Subdue Greedy Approach

 Subdue is a graph-based relational learning system. The work on Subdue is one of the pioneering

works in the field of graph-based data mining. Inputs to the Subdue system can be a single graph or a set of

graphs. The graphs can be labelled or unlabeled. Subdue outputs substructures that best compress the input

dataset according to the Minimum Description Length (MDL) [17] principle. Subdue performs a

computationally-constrained beam search which begins from substructures consisting of all vertices with unique

labels. The substructures are extended by one vertex and one edge or one edge in all possible ways, as guided by

the example graphs, to generate candidate substructures. Subdue main-trains the instances of substructures in the

examples and uses graph isomorphism to determine the instances of the candidate substructure in the examples.

Substructures are then evaluated according to how well they compress the Description Length (DL) of the

dataset. The DL of the input dataset G using substructure S can be calculated using the following formula,

I(S) + I (G/S)

 A common characteristic of a majority of the graph-based data mining methodologies described above

is that they focus on complete, frequent sub-graph discovery. Complete, frequent sub-graph discovery

algorithms such as FSG and gSpan are guaranteed to find all sub graphs that satisfy the user specified

constraints. Although completeness is a fundamental and desirable property, one cannot ignore the fact that

these systems typically generate a large number of sub-structures, which by themselves provide relatively less

in-sight about the domain. Typically, interesting substructures have to be identified from the large set of

substructures either by domain experts or by other automated methods so as to achieve insights into this domain.

Subdue typically produces a smaller number of substructures which best compress the graph dataset. These few

substructures which compress the input dataset can provide important insights about the domain.

Comparative Study of Frequent Graph Structure Pattern Mining Algorithm

www.ijesi.org 55 | Page

VII. Comparison Of Current Systems
Here we provide the comparative study of current electronic payment system. After study of four payment

option we present the comparative study table.
Algorithm Graph Representation Candidate Generation Limitations

FARMER Tries Structure Level-wise search ILP In Efficient

FSG Adjacency List One edge extension NP-Complete

SUBDUE Adjacency Matrix Level wise Search Extremely small of patterns

GSpan Adjacency List Right Most Extension Not
scalable

FFSM Adjacency Matrix Merging and Extension Np-

Complete

Gaston Hash Table Extension Interesting

Patterns may be lost.

MOFA Adjacency List Right Most Extension Frequent graphs
Generated may not

be exactly frequent

VIII. Conclusion
 Comparative study of various frequent sub graph pattern mining algorithms namely FSM, Gaston,

GSpan ..etc is carried out and result is presented which can be used as a guide-line to develop more efficient

frequent sub graph mining algorithm. It provides necessary inputs to the user for selecting appropriate frequent

sub graph mining algorithm for different types of application for graph pattern classification problems.

References:
[1]. DISCOVERING Interesting Molecular Substructures for Molecular Classification Winnie W. M. Lam and Keith C. C. Chan*,

Member,IEEE ,2010

[2]. FREQUENT SUBGRAPH MINING ALGORITHMS A SURVEY AND FRAMEWORK FOR CLASSIFICATION K.Lakshmi1

and Dr. T. Meyyappan2, 2012
[3]. An Apriori-based Algorithm for Mining Frequent Substructures from Graph Data Akihiro Inokuchi, Takashi Washio and Hiroshi

Motoda, 2003

[4]. A Quickstart in Frequent Structure Mining can make a Difference Siegfried Nijssen LIACS, Leiden University, Joost N. Kok
LIACS, Leiden University, 2004

[5]. gSpan: Graph-Based Substructure Pattern Mining Xifeng Yan Jiawei HanDepartment of Computer Science University of Illinois at

Urbana-hampaign xyan, hanj_@uiuc.edu, 2003

[6]. Subdue: CompressionBased Frequent Pattern Discovery in Graph Data Nikhil S. Ketkar University of Texas at Arlington

ketkar@cse.uta.eduLawrence B. Holder University of Texas at Arlingtonholder@cse.uta.eduDiane J. Cook University of Texas at

Arlingtoncook@cse.uta.edu, 2003
[7]. Substructure Discovery in the SUBDUE System by Lawrence B. Holder, Diane J. Cook and Surnjani Djoko, 2004

[8]. CloseGraph: Mining Closed Frequent Graph Patterns Xifeng Yan xyan@uiuc.edu, Jiawei Hanhanj@uiuc.edu, 2003

Y L Patel" Comparative Study of Frequent Graph Structure Pattern Mining Algorithm"

International Journal of Engineering Science Invention (IJESI), Vol. 08, No. 07, 2019, PP 49-

55

