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ABSTRACT: The purpose of this article is to propose numerical solution and analyze the discontinuous
Galerkin finite element methods of the Steklov eigenvalue problem. We provide a two-grid discretization scheme
of discontinuous Galerkin method based on the shifted-inverse iteration. With the scheme, the solution of the
Steklov eigenvalue problem on a fine grid is reduced to the solution of the Steklov eigenvalue problem on a
much coarser grid and the solution of a linear algebraic system on the fine grid. Numerical results are provided
to validate our theoretical findings.
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l. INTRODUCTION

Steklov eigenvalue problems in which the eigenvalue parameter appears in the boundary condition,
arise in a number of applications. For instance, such spectral problems are found in the study of surface waves
[1], in the stability of mechanical oscillators immersed in a viscous fluid [2], and in the vibration modes of a
structure in contact with an incompressible fluid [3]. In recent years, more and more scholars studied the
numerical methods for Steklov eigenvalue problems [4-9].

Finite element methods are the most commonly used numerical methods for solving eigenvalue
problems. However, The first introduction of the discontinuous Galerkin(DG) method was analyzed in Reed and
Hill for the approximation of linear hyperbolic problems. The main feature of DG method is that the test
functions are discontinuous along the edges (or faces) of the mesh. DG method enjoys the following advantages
such as local mass conservation, combination coupled with other methods easily, hp-adaptivity, working on
polygonal meshes. Consequently, DG methods have been developed for many problems, and we cite as a
minimal sample [10-13]. Moreover, DG methods for the eigenvalue problems have been discussed in many
papers, for example, Laplacian eigenvalue problem [14], Steklov eigenvalue problem [15], biharmonic
eigenvalue problem [16-17], transmission eigenvalue problem [18-19] and Maxwell eigenvalue problem [20-
21].

In recent years, DGFEM have gained much interest due to their ease of treatment of highly
unstructured meshes and inhomogeneous boundary conditions. The DGFEM have been attractive due to their
flexibility in handling general meshes, non-uniformity in degree of approximation and capturing the rough
solutions more accurately. Hence, the DGFEM has been developed and applied to solve various problems, for
example, elliptic problems [22-23], hyperbolic problems [24-26], Navier-Stokes equations [27-28], etc.

In this work, we will further study the symmetric interior penalty discontinuous Galerkin methods
(SIPG) for the Steklov eigenvalue problem. The main difficulty of the theoretical analysis stems from the
complexity of bilinear forms of the SIPG method and its nonconformity. For addressing this problem, we
rewrite the SIPG method in a discontinuous way by introducing a lifting operator, and then decompose the error
into a conforming and nonconforming parts that are estimated separately. Note that these techniques have been
applied for source problems [29] and Laplace eigenvalue problems [30].

Based on the above work, the remaining part of our article is arranged as follows: In Section 2, we first
introduce the model problem and then describe the SIPG method and its error estimates. In Section 3, establish a
two-grid discretization scheme of DGFEM based on the shifted-inverse iteration and the optimal convergence
for the proposed scheme. In Section 4, conduct a theoretical analysis, that is to say, a priori error estimates of
DGFEM for the source problem and the eigenvalue problem are presented. Finally, some numerical
experimental results demonstrating our theoretical results are provided in Section 5.

Let Ht(Q) and H®(9Q) denote Sobolev spaces on Q and dQ with real order t, respectively. The norm
in HY(Q) and H*(99) are denoted by |I-Il; and Il 50, respectively. H°(Q) = L*(Q).
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In this paper, we will write a < b to indicate that a < Cb with C being a generic positive constant
independent of the mesh diameter which may take different values in different contexts, and write a = b when
a = Cb for some positive constant C for simplicity.

1. PRELIMINARIES
We consider the following Steklov eigenvalue problem;
du
—Au+u=0inQ, az/lu ondQ (2.1
where Q c R? is a bounded polygonal domain with Lipschitz continuous boundary 99, Z—z is the outward
normal derivation on 9.
The variational problem associated with (2.1) is given by: Find 1 € R and 0 # u € H*(Q), such that
a(u,v) = Ab(u,v), Vv € H (Q) (2.2)
where

a(u,v) = f (Vu - Vv + uv)dx, b(u,v) = L uvds
Q Q

1
lull,= (b, u))z =l ullgsn
It is clear that a(-,-) is symmetric, continuous and H(Q)- elliptic bilinear form on H1(Q) x H1(Q).

Let 7;, = {T} be a family of regular triangulations of Q. Let h stand for the mesh-size, namely h =
max{hr: T € T} is the diameter of 7;,, with h; being the diameter of the triangle T. The diameter of an edge e
is denoted by h,, and the set of edges of elements £, = £ UEL where &}, denotes the interior edges set and £2
denotes the set of edges lying on the boundary dQ). We denote the average {v} and jump [[v]] of v on e by

{v} = %(VJ' +v7), [[v]]=vint+vn”

where e € dT* N AT, vt = v|p+, v~ = v|y-, nis the unit outer normal vector from T* towards to T~
If e € €L, define the average and jump of v on e as follows:

{vl=v, [v]]=vn
Define the DGFEM space:
h={vel?Q):v|; € P, (T),VT € T;}
where P,,,(T) denotes the space of polynomials defined on T with degree less than or equal to m > 1. Introduce
the piecewise H® function space of degree s:
H5(T,) = {v € L2(Q):v |y€ HS(T),VT € T}
The DGFEM discretization of (2.2) is to find A, € R and 0 # u, € S", such that
an(up, vy) = Apbp (up, vy), Vo, € S" (2.3)

where

ap(up, vp) = J (Vuy, - Vup, + upvp)dx — j{vuh} [[vr]lds
TeT,

eEEh

D | v thwas + 2. o), ) e

eESh eet h

by (up, vy) = Z fuh vpds

eeeh
where ¢ is the interior penalty parameter. We choose ¢ to be sufficiently large to have coercivity. It is clear that
the discretization (2.3) is symmetric which is called symmetric interior penalty Galerkin method (SIPG) in
DGFEM.
Introduce the sum space V(h) = S" + H*(Q) endowed with DG norm

enl2 = > (19l + Ty l2,) + Z LIl

T€T ecsy
and define the other norm on H*5(7;,) (s > %) by

el = a2 + " kel
eeeﬁ
Note that ||-Il; is equivalent to |I-[l,, on S™.
In order to show that the discretization (2.3) is stable, first we will show that a,(:,-) is coercive on
Sh x S". 1t is easy to know that the following continuity and coercivity properties hold:
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1
la (un, va)| S Nugll, s, Vup, vy, € S® + H7(T,) <s > E) (2.4)
Il up 123 |ap(up, up)l, Vu, € S" (2.5)
Proof. Combining the Cauchy-Schwarz inequality, we obtain inequality (2.4). For convenience, for any u, €
S", we set
anCunun) = > N Vup It ) Ny 1y
T€ETy TETy
(2.6)
2 ) | T alids + ) oin,? “[lu]] 1.
eeSh eESh

=[+1+1+1V
To show the coercivity we need to bound the potentially negative terms by the positive terms. We first estimate

the third term. Using Cauchy-Schwarz inequality, the inverse inequality and Young’s inequality, we deduce that

D | e s =3 | wu - tanies

eegh T€ETy

1 1
< D IR Tun} loaraal b [l Hoaman

T€ETy

1 1
S D 1 hZVun loaryaall h,?[l]] loaman

TETy

1
S D VTV Nl B 7 [unl] Homan

T€ETy

1
sz <6C Il Vuy, ||é,T Ilh [[uh]] IloaT\ag>

T€ETy

and taking § = (1 — B)/2C and ¢ = Bo + 1/(28) = C/(1 — B)? we deduce

anCatnun) = > N Vuy Wt > Ny 1y

TETR TETR

‘ZZ f{Vuh}[ [u]] ds+z ol h, Z[uh]nw
ee&h ee&h

> Z (I Vatg 127 +1l wy, 12— 25C Il Vay 12
TETh

1 1
~25 Il b * [[un]] 16 arvant @ I R 2 [[un]] 13 5700)

1 21
= Z ((1 —28C) Il Vuy I+ (o —%) Il he 2 [[un]] 15 o 00 +1 up ”(2),T>

TETR

1
2p ) (n Vuty 37 +1 tn W7+ 0 1 b, *[[up]] ll%,aT\an)
TET
=Bl uy, lIZ
So the coerciveness of a; (-,+) is valid.
We consider the following source problem (2.7) associated with (2.2) and the DG approximate source
problem (2.8) associated with (2.3), respectively.
Find w € H1(Q) such that
a(w,v) = b(f,v),vv € H(Q) 2.7)
Find w,, € S" such that
ap(Wy, vy) = by (f, v3), Vv, € S" (2.8)
Since a(-,) and a,(-,-) are continuous and coercive on H*(Q) and S", respectively. b(-,) and b,(-,-) are
bounded, from Lax-Milgram Theorem we know that (2.7) and (2.8) admit the unique solution w and wy,,

respectively.
We now recall the following regularity estimates for the above source problem [31].
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Lemma 2.1. If f € L2(89Q), the solution w of the source problem (2.7) satisfies w € H1*"1(Q) with r; € (0,%)
and

I w i SIf 00 (2.9)
1
For the case that f € Hz(9Q), we have w € H*2(Q) and
I w e, SHf L (2.10)
>

Let w and w;, be the solution of (2.7) and (2.8), respectively, then the SIPG approximation (2.8) is
consistent:
a,(w —wyp,v,) =0,Vv, € St (2.11)
Proof. Applying Green’s formula elementwise in 7, and using the fact that Y e, faT Qg P - ngds =
fEh [[q]] - {@}ds + fsf‘} {q} - [[¢]]lds and [, [[Vw]] - v = 0 on inner edge e, we deduce

O‘Z f( Aw + w)vdx

TET},
TEZT: fVW Vvdx+; jwvdx— 2 aTg—‘::-vds
TEZT: f(Vw Vv+wv)dx—; jaTVW n - vds
:TET f(Vw Vv+wv)dx—eegh j{VW} [v]]ds—;hi[[vw]].{v}ds
= f(Vw Vv + wv)dx — j{VW} [[v]lds — Z f [[Vw]] - vds
T€Th eeeh eeeh
=T€Th f (Vw - Vv+wv)dx—eESh f {Vw} - [v]]ds—eegh f {Vv} - [[w]]ds
+eez,; o[ v”ds—eezgh | Foas
which means that
a,(w,v) = b,(f,v),Vv € H*"(T}) (2.12)

It is obvious that S® < H**7(7;,), then subtracting (2.8) from (2.12) we get (2.11).
Then, thanks to Lemma 2.1, for the source problem (2.7), let f € L?(8£), we can define the solution

operator A: L2(0Q) — H”g(ﬂ) c H'(Q) as
Then, thanks to Lemma 2.1, for the source problem (2.7), let f € L2(8Q), we can define the solution
operator A: L2(0Q) — H”g(ﬂ) c H'(Q) as
a(Af,v) = b(f,v),Vv € H(Q) (2.13)
Define the operator T: L?(39) — H§+§(an), such that
Tf = Af laa
Similarly, from (2.8) we define a discrete solution operator A,: L?(0Q) — S" as
an(Anf,v) = by (f,v),Vv € S" (2.14)
and the discrete operator Ty,: L2(3Q) — §S" < L2(9Q), such that
Thf = Anflaa
where §S" is the restriction of S" on Q.
Hence, (2.2) and (2.3) has the following equivalent operator form, respectively:
Au = pu,Tu = pu (2.15)
Apup = ppup, Thup = ppup (2.16)
where u = %,uh = i In this paper, 4, 4, and u, u;, are all called eigenvalues.

From the definition of 4, and (2.5), noticing that |-ll; is equivalent to ||-]l, on S*, we can derive that
I Anf 15 an(Anf, Anf) = bp(f, Anf) SN f lopall Anf loaaSI f loaall Anf Il

which yields
I Apf sl f lloaasI f Iy (2.17)
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Lemma 2.2. Suppose that ¢ € H'*+$(T)(0 < £ < l) and A(p € L2(T), then there holds
Vo -n || 1 <|| Vo ller+ h || A N7, VT € Ty, e € 0T (2.18)

Introduce the auxiliary problem find ¥ € H'(Q) such that
a(v,¥) = (v, 9), Vv € H'(Q) (2.19)
From the elliptic regularity estimates for homogeneous Neumann boundary problem, we know that the
following regularity estimate holds: Vg € L?(Q), the solution ¥ of (2.18) belongs to H'*#(Q)(B > %) and
satisfies
I liep=ll g llon (2.20)
Let ! € S™ denote the linear interpolation of ¥ on 7;,.

Lemma 2.3. Suppose that w and w;, be the solution of (2.7) and (2.8), respectively, w € H**(Q)(0 < s < %),
then there hold

Il w—wp llgas RE Il w—wy llg (2.21)
Proof. For any fixed g € L2(Q), by using the consistency of DG method, (2.11) and the Schwarz inequality we
deduce

(gw—wp) = an(w —wy,¥) = ap(w —wy, P — ")
Shw = w Bl =9/ o+ 1 [ [w = wll - (7 = W)

SR Nw = gl P gt | [ T = wil) - (70 = sl (222)
e e
S Iw —wy llgh N+ Z I [[w — wall loell (V@ — 9"} lloe
From the trace inequality, the interpolation estimate, the de?inition of DG norm and (2.20), we get
1
B__
DW= wall ool (7G0 = )} loeS > I = wall loe By 2 19 lyaprour
e e
(2.23)

1
1 2
< (Z I h, 2[[w — wy]] ||§_e> RN llyep

ShElw—wy ligl g loq
Substituting (2.23) into (2.22) and using the Riesz representation theorem, we get (2.21). The proof is
completed.

Theorem 2.1. Suppose that w and w;, be the solution of (2.7) and (2.8), respectively, w € H1*S(Q)(0 < s <
%), then there hold

lw—wpllgsSh*lIlwlliisg (2.24)
Proof. From (2.5), (2.11), the definition of a; (-,-) and the Schwarz inequality, it is obtained that

2
Iw' —wyll, < layW' —w,w' —w,)|

S w! = wliglw! —wyll, + |Z f VW' —=w)} - [w' —wy]]ds]

(2.25)
S B = Wil + D TG =Wl [ = walll,,
e
Derived from inverse estimate, trace estimate, interpolation estimate and (2.21), we deduce
Z PG = w3 ! = walll_,, Z B2 ! = wal] g 109G — W),

Z By 2 0 [w! = wa] loell w! —w

< Z K70 w7 = wal] ol lsss (2.26)
e
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a :
< (Z I h,2[[w! — wyl] ||3,e> RSN W llys
e

ShE Il wh —wy llglh w4
then using (2.25), (2.26), triangle inequality and the interpolation error estimate we obtain (2.24), the proof is
completed.
Let w*! € S" denote the linear interpolation of w* on 7;,.

Theorem 2.2. Suppose that w and w;, be the solution of (2.7) and (2.8), respectively, w € H1*S(Q)(0 < s <
%), then there hold
Il w—wy llggasS hS lw—wy lig (2.27)
Proof. Consider the source problem of the dual problem of equation (2.2) a(v,w*) = (v, g),Vv € H*(Q),
where (v, g) = faﬂ vgds, for any fixed g € L2(39), using (2.11) we obtain
W —wp, g) = an(Ww —wp,w") = ap(w —wy,w* —w)

< B =yl gl +1" [ [lw = wil]- (70w = w)lds] (2.28)
Then ’
| Z f (1w = wall - (T =w)dsl & D" 0 [w=wall Iy 1 (TG =w}I s,

e
1
< TR0 W = will e ITGw" = w31,
:
eS_l
s z he 2 1 [Iw = wpl] loell w* =w Il 1, (2.29)
:

e
1
SR = wal] g ell Wl

e
< h® Iw— Wp ”G" g ”0,69

Substituting (2.29) into (2.28), and using the Riesz representation theorem we get (2.27).

Assume that A is the kth eigenvalue of (2.2), and the algebraic multiplicity is equal to g, A = 4;, =
Akr1 = Agaz = =+ = Agyg-1- When I T — Ty, llg 90— O(h — 0) [5], q eigenvalues Ay p, As1ns = Aksg-1,n OF
(2.3) will converge to A. Let M(A) be the space spanned by all eigenfunctions corresponding to A and M, (1) be
the direct sum of the eigenspaces corresponding to all eigenvalues of (2.3) that converge to 1. We have the
following error estimates [32].

Theorem 2.3. We assume that M (1) c H*t1(Q) (s > %) ,t = min(m, s), then there holds

A=A, S h? (2.30)

Let u,, € M;,(A) be an eigenfunction of (2.3), then there exists u € M(A) such that
lu—up lgaqs Rt (2.31)
Il u— Up "hs ht (232)

Proof. Let A and 4,, be the kth eigenvalue of (2.2) and (2.3), respectively, and dimM (1) = g. From Theorem
7.3 [15] we have
k+q-1
A=y IS Z | by, ((T - Th)<ﬂir<ﬂj) | +1I (T —Ty) |M(A)"€,6.Q (2.33)
i,j=k
where @y, -+, @y4q—1 are the basis fLJJnctions for M(4). Then, from (2.12), (2.11) and (2.4), we deduce
b ((T = Tr) @i, ¢;) = bp((A — ARy, 9;) = an(Ap; — Ap@i, Apj)
= ap(Ap; — Ah(pi:A(pj - Ah‘ﬂj)
S Ag; — Apg; Inll Ap; — Ap@; Iy
S T P o T PSS
Noting that Af = w, A,f = wy, using Theorem 2.2 and Theorem 2.1, we get

I (T = Tw) lmyllopa= sup I TF = Tuf lloga
FEM(P)lifllgan=1
S sup RN Af Nlyge oS BT
FEM(P)Iifllgan=1
Substituting (2.34) and (2.35) into (2.33), we obtain (2.30).

(2.34)

(2.35)
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Since | T — Ty, llg,9q— 0, from the spectral approximation theory we know that there exists u € M(4)
such that
lu—upllggasCI (T —-Ty) |M(,1)||o,ag (2.36)
Then (2.31) follows directly from (2.36) and (2.35).
Since u = AAu and u;,, = A,A,uy, using the triangular inequality, (2.17), (2.30) and (2.31), we deduce
Il up, —u llp=Il ApApu, — AAu iy,
SN Ay Apuy, — AApu Nl +1 AApu — AAu i,
S Apup — Au llgpq I Apu — Au iy,
S A=A+l uy —ullgaq +Il Apu — Au lly
S h?t + Rt + Rt S Rt
i.e., (2.32) is valid. The proof is completed.

1. TWO-GRID DISCRETIZATION
Let {7;”}6 be an family of regular meshes of Q, h;_; > h;, and let S™ be the DG space defined on Th;-
Denote T, =Ty, Sho = §H  Now, for the eigenvalue problem (2.3) we give the following two-grid
discretization scheme of DGFEM based on the shifted inverse iteration.
Scheme 3.1. Given the iterative times .
Step 1: Solve (2.3) on S”: Find (A, uy) € R x S such that Il uy llg99= 1 and
ay(uy,v) = Agby(uy, v), Vv € S¥ (3.1
Step 2: u < uy, A0 < A,,i < 1.
Step 3: Solve a linear system on S™i: Find u’ € $™ such that
ap,(u',v) — AMi-1by (u',v) = by, (uMi-1,v), Vv € S (3.2)

Letuhi = —%
1 llo,00

Step 4: Compute the Rayleigh quotient
ap, (uh, u")
by, (uhi, uhi)
Step 5: If i = [, then output (A", u™), stop; else, i < i + 1 and return to Step 3.
From (2.11) we define the Ritz-Galerkin projection operator P,: H*(Q) — S" by
a,(u — Pyu,v,) = 0,Vv, € St (3.3)

Al

Hence, for any f € H*(Q)
an(Anf = Po(Af),vn) = an(Anf — Af + Af — Py (Af), vy) = 0,Vv,, € S"
Thel’l, Ahf = PhAf, Yv € HI(Q), thUS Ah = PhA
We first give the following lemmas to prepare for the error analysis.

Lemma 3.1. Let (1,u) be an eigenpair of (2.2), then for any v € S"* and || v ll,# 0, the Rayleigh quotient

RWw) = %such that
b
a,(v,v a,(v—u,v—1u) lv—ul?
r( 2) M - _2 i b (3.4)
vl v vl

Proof. From (2.11), we deduce
a,(u,v) = b(Au,v) = b, (Au,v),Vv € St
therefore,
a,(v—u,v—u)—Ab(v—u,v—u)
=ap(v,v) + ap(u,u) — 2a,(v,u) — Ab(v,v) — Ab(u,u) + 2Ab(v,u)
=a,(v,v) + Wb(u,u) — 2Ab(v,u) — Ab(v,v) — Ab(u,u) + 2Ab(v,u)
=a,(v,v) —Ab(v,v)
By dividing by Il v lIZ on both sides of the above identity, we have (3.4).

Lemma 3.2. For any nonzero u, v € S*,

| u v 1< lu—vl u v II<2||u—17|| (3.5)
lull vl — Mull " lull lvl — vl '
Proof.
” u v ”_”uIIvII—vIIuII"_||uIIvII—vIIvII+vI|vII—vIIuII||
Tull vl lullivny | lhw vl l
lw—=v)lvi+vdlvil=lul)ll lu—vll
< <
(7} A Il ll
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i.e., the first inequality holds. Similarly, one can deduce the second inequality. Note that Lemma 3.2 holds in
any normed space.
Let (A, uy) be the kth eigenpair of (3.1), then (A", u™) derived from Scheme 3.1 is the kth eigenpair

approximation of (2.2). In what follows we also denote (A, uy) = (A, Ur ), (A", uM) = (Ak ,uk h.

V. THE THEORETICAL ANALYSIS
Next, we will prove the error estimates and the convergence of (A", u") derived from Scheme 3.1.
Our analysis is based on the following crucial property of the shifted-inverse iteration in DGFEM.
In the foIIowing discussion let (Ag, ux) and (A p, ug n) denote the kth eigenpair of (2.2) and (2.3),

respectively, and p;, = e Hicn = M(#k) = MAk), My (i) = Mp(Ag).
Denote dlst(u Sh) = 1nf || u—vlly,d = dimS™.

Lemma 4.1. Let (ug,wy) be an approximation of the kth eigenpair (u, w) of (2.2), where p, is not an

eigenvalue of 4,, and wy € S™ with | wy llg o= 1. And let uy = W Suppose that
hWollo,00

. 1
(Cl)v }\le( I WO—U ”060S E,
(€2) luo —ul <% 2 i — 1yl S% forj=k—-1kk+q(G+0),p= mi,?|yj — u| is the separate constant of
j#*

the eigenvalue u.
(€C3) u' € S"and u" € S"satisfy

!

u
(1o = AW = ug,u" = -——— (4.1)
Ihu' llp a0
Then

C )
dist(u", M, (D)) < ke max_ | po = Hin dist(wo, M, (1)) (4.2)

Proof. Let {uj,h}f be eigenfunctions of A, satisfying b(w; n, u;n) = &;;. Then
d

Uy = Z b(uoruj,h)uj,h

j=1
Since y, is not an eigenvalue of A, from (4.1) we can obtain

a
, _ Ho — Ug,n
(Ho - :uk,h)u = (Mo - Mk,h)(#o —Tp) My = _7b(u0, uj,h)uj,h (4.3)
= Ho — Hjn
Using the triangle inequalities and the condition (C2), we have
p pP_Pp
— < <—4+—_==
o = Hichl < lko —pl + I —pienl = T+ 7 =5
p pP_p
o = Hjnl Z | = 1l = ko =1l = Iy —mjnl 2 p =3 =7 =3
where j =k — 1,k + q(j # 0), and thus we obtain
Ko — Ujn 2%forj¢k,k+1,m,k+q—1 (4.4)

Because the operator T), is self-adjoint with respect to b(-,-), in fact, for Vf € L2(3Q), from the symmetry of
ay(-,) and b(-,-) = b, (:,) we have
b(Tnf,vn) = b(Wn, Tuf) = b (Wn, Tnf) = an(Tnvn, Tuf)
= ap(Tnf, Thvn) = bp(f, Thvn) = b(f, Tavn)
and Aju;, = upuy, therefore, for j = 1,2, -+, d, there holds
b(Tywo, ujp)ujn = b(Wo, Totj p)Ujn = b(Wo, Ujplj ) Uik
= b(WO»uj,h)”j,huj,h = b(WO’uj,h)Ahuj,h
Noticing that {u; ,}, is an orthonormal basis of M, (1) with respect to the L2(8Q) inner product b(,-), from
Uy = —22%0__ (4.3), (4.5), (2.17) and (4.4) we derive

lApwollo,00

(4.5)

k+gq-1 :

k+q-1

, Ho — Ug,n
I (po = pip)u’ = —
e o — Ujn
j=k
Mo — M,
D

jekkttmkrgo HO T Hin

b(uo, uj, h)u] nlln
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1 Ho — Hin
~ 1 Apw | o — g AW Ui )i
R0 R0.0Q || i p ks T ktg—1 1 © Jh h
1 Ho — Hin
T, i R
R0 R00Q |y pe ke T ferq—1 70 FIR n
1 Ho — Hi,n
~ T Agwo | Ho— g OV i Anttin
R0 R0.0Q || i p ks T ktq—1 1 © Jh h
1 Ho — Hi,n
:7” T w ” Ah 7# e b(WO,Uj'h)u]"h (46)
r*0 Toaa jEkk+Tketq-1 L0 FTR 0
C Mo — Hin
_— _— b(Wo,u'h)u'h
I Apwe I —Uj PRI
rWo llooa |y 1 i iqor HO~ Hik 090
2
2C
2
= ol AL Wl Ho — Hi,n b (WO:Uj,h)
h™0%0,00 jER kAL k+q—1
k+q—-1
C
S Aol [to — il Wo — b(wy, uj,h)uj,h
PIARWoly 30 .
B j=k
0,00
¢ inf || I
= Mo — Mg _INL Wy — VIl 5,
PlARWollg 50 vEMp(2) :
c

S Mo
PlARWo g 50

Taking the norm on both sides of (4.3), and noting that u, =

— tye, dist(wo, My (1))

A% the condition (C1) and (4.5), we get

lAnwollo,00

Ho — Uk,n
I (o — i)’ ||Oaﬂ—||z o 00 ) o

da

Hi,n

__ D <L
Il AhW() ”0,6(‘2 = Uo— U
j=1

jh

2

bZ(Wo: .Uj,huj,h))

k+gq-1

1 Ho — Hin (4.7
————  min b? (wo, u;, h)
1 Apwo llopq ksisk+a=1|po — tjn
k+q-1
= —1 min Ho ~ Hich w w Z b(wg, Ui p)u
= ] o~ | Wo — 0 Uj,n)Ujn
I Apwg llg,aq ksisk+a=1 [lg — W) . B
0,00
1 min |Fo Hich
21 Apwy llo 90 ksisk+a=1 (o — Ujp

From (4.6) and (4.7) we have
dist(u", M, (1)) = dist(sign(po —

Uy, h)u Mh(l))

k+q-1
. 1 Ho = Uk,
< |[sign(po — tn)u” — = b(uo, ujn)u;
( 0 kh) "(ﬂo"‘ﬂkﬁ)uq%ﬁn & ﬂo"ﬂﬁh ( 0 ]h) j,h
, k+q-1 "
(1o — pen)u Ho — B

1o = rn)u'lly g Mo =)'l 5 & o

b(uo, uj_h)uj_h

—Hjn
h
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k+q-1
Ho 7 Hin / Ho — Ui,k
< 21l Apwo llo,00 kJE,ﬁ’g 1 o — Hicn (P‘o - lik,h)u - mb(uo’ uj.h)uj,h
S ' i 0 J»
j=k n
C .
= ;ks}gkquq Ho = Hjn dlSt(WO'Mh(A))

The proof is completed.
Next, we shall use Lemma 4.1 and Theorem 2.2 to analyze the error of two-grid discretization Scheme
3.1. We first consider the case of [ = 1. Denote H = hy, h = h;.

Theorem 4.1. Suppose that M(1,) € H'*S(Q)(s = r), and t = min{m,s}. Let (A}, ul") be an approximate
eigenpair obtained by Scheme 3.1(1 = 1) and H is sufficiently small, then there exists u;, € M(A4;) such that

luk — will, < CCH® + hY) (4.8)

llug = well, 5, < CCH? + A7) (4.9)

M — A < C(H? + hb)? (4.10)

Proof. We use Lemma 4.1 to complete the proof. Select y, = i, wy =uyand y, = _AnYH_ Erom (2.31) we
Ay ||Ahu1-1||o_09,

know that there exists 4 € M(4,) such that
| & —uy o< CH*
Using the triangle inequality and (2.31) we can deduce that
dist(uy, My (A)) <Il uy — u llz+ dist(u, M, (4;))

< C(H' + ht) < CH? (4-11)
therefore,
. _ < t
vty I 4 =¥ loga= CH
when H is small enough, the condition (€1) in Lemma 4.1 is valid.
From (2.29) we can deduce that
|y — Al p
j— . = S CHZt S -
fo = T Al 4
j,h ] 2t p . .
i—Hip = <Ch**<—,j=k—-1,k,....k+qj+0
ﬂ] HLh A%hﬂj 4 ] q,]
that is, the condition (C2) in Lemmma 4.1 holds.
By (2.14) we see that Step 3 in Scheme 3.1 is equivalent to the following:
a,(u',v) — Aza,(Apu', v) = a, (Apuy, v)Vv € St
wh = 4
kT e
ul
A" = AW = A" Apuy,  wg =
I u' llop0
Note that A51A,uy and u, differ by only one constant, then, Step 3 in Scheme 3.1 is equivalent to
ul
At — AU = ug,ult = ————
( H h) 0 %k ” u' ”0,69
From the above arguments we see that the conditions of Lemma 4.1 hold.
Since M, (4;) is a g-dimensional space, there must exist u* € M (4;) such that
Ik = u* lly= dist(ug, My (L))
Forj=kk+1,...,k+q— 1, according to (2.32) we get
| | 1 AH - /‘lj,h
Ho = Mjp |= 57— —o—| S ———
° " Ay Aj.h /1H/1j,h
<C(1dg — Al + A — 24 ) < CH? (4.12)
Therefore, from Lemma 4.1, (4.11) and (4.12) we can deduce that
Iup —u* ll,= dist(ul, My(A))
4 _ at (4.13)
< D ke B Ho = Hin dist(uy, Mp(A4)) < CH

From (2.31) we know that there exists u, € M(4;), such that || u* — u; Il,= dist(u*, M(4;)), and
[[u” = welln < CR
then
lul — g <l ult —u* ll, +lw —uy ,< C(H3t + hY)
that is (4.8).
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Next, we will prove (4.9). From (2.28) we can deduce that
Il u* —ug llgga< CA™*T
which together with (4.13) yields
I ui = ug lopasI ug —u llgaq +ll u* =y llggn< C(H3 + AT
Finally, we use Lemma 3.1 to derive (4.10). From Step 4 of Scheme 3.1, Lemma 3.1, (4.8) and (4.9) we can
deduce that
ah(u’ﬁ — Uy, ulfcl — Uy) b(u;}cl — Uy, ulfcl — Ug)
AR “ PAR
< Clluk = w WG+ 1] I = wye 15 50)
< 2C(H3t + ht)?

12k — Al =

The proof is completed.

V. NUMERICAL EXPERIMENTS
In this section, we will report some numerical experiments for Scheme 3.1 to validate our efficiency of

the DG-multigrid method for solving the Steklov eigenvalue problem. We use MATLAB 2017a to solve Our
program are compiled under the package of Chen [33]. The test domains are set to be the unit square Qg: =
(0,1)2 with vertices are (0,1), (1,0), (0,0), (1,1) and the L-shaped domain Q,:= [0,1] X [0, g] U [0,5] X [%, 1],
respectively. The numerical results are listed in Table 1 and Table 2, respectively. In Table 1 and Table 2, h
stands for the mesh size. And the four smallest approximate eigenvalues on € are

A, = 0.240079085421, A, = 1.492303134531

A3 =~ 1492303134531, A4 = 2.082647054031
The four smallest approximate eigenvalues on (; are

A1 = 0.182964236872, A, = 0.893672918808

A; = 1.688600483582, Ay = 3.217859788054
Ak,n - The kth eigenvalue of (2.2) obtained by directly solving using the eigs command on the grid 7;
A% - The kth eigenvalue derived from Scheme 3.1;
CPU, (s): The CPU time (s) used to solve the eigenvalue problem directly on the fine grid 7;,;
CPU™ (s): To calculate the CPU time (s) from the program started running to the current using Scheme 3.1.

This paper presents a study on the two-grid discretization of Steklov eigenvalue problems using the

discontinuous Galerkin method. Based on our approach, we solve the eigenvalue problem on the fine grid 73,
using linear elements and also provide solutions using Scheme 3.1 Numerical experiments are conducted on Qg
and Q. From Table 1 and Table 2, it can be seen that when the mesh size increases, the advantages of the two-
grid discretization method with shifted inverse iteration become more apparent, indicating the efficiency of our
approach. That is, comparing to directly solving the eigenvalue problem on the fine grid, the two-grid
discretization method based on shifted inverse iteration requires less CPU time. Therefore, this method has
strong practical value for solving Steklov eigenvalue problems.
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—

—&— for the first eigenvalue
—6— for the second eigenvalue
h “}—— for the third eigenvalue
7| —E— for the fourth eigenvalue
— — — - aline with slope 2

107
The mesh size h

Figure 1: The error curves of the approximation for the first fourth eigenvalues of (2.2) obtained by solving on

linear element Q.

101

—— for the first eigenvalue

|~ for the third eigenvalue
— —— far the fourth eigenvalue
— — — - aline with slope 2

—6— for the second eigenvalue |

101

The mesh size h

Figure 2: The error curves of the approximation for the first fourth eigenvalues of (2.2) obtained by solving on

linear element Q, .

Table 1: The first fourth eigenvalues of (2.1) solved using linear elements on domain €, based on scheme 3.1.

x|l H 3 Aen Ao A CPU, | cPU"
V2/8 v2/64 | 0.240211716943679 | 0.240081216887906 0.240087584025356 0.53 0.03

1 \/5/16 ﬁ/128 0.240112826863705 | 0.240079619065521 0.240087583647472 2.34 0.03
32 | Page
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1 \/2/32 \/Z/ZSG 0.240087583631145 | 0.240079218879418 0.240087583631562 | 11.05 | 0.07

2 \/7/8 \/7/64 1.497796681403516 | 1.492394549965922 1.492682256586994 0.54 0.02

2 \/E/IG \/f/lZS 1.493737311068824 | 1.492326033500083 1.492669551372664 2.30 0.03

2 \/2/32 \/E/ZSG 1.492666919245250 | 1.492308863965837 1.492666919245329 | 11.20 | 0.07

3 \/7/8 \/7/64 1.497796681403516 | 1.492394549965922 1.492682256586994 0.54 0.02

3 \/E/IG \/f/lZS 1.493737311068824 | 1.492326033500083 1.492669551372664 2.30 0.03

3 \/2/32 \/E/ZSG 1.492666919245250 | 1.492308863965837 1.492666919245329 | 11.20 | 0.07

4 \/7/8 \/7/64 2.119021802190831 | 2.083232720433984 2.081623917337848 0.53 0.03

4 \/E/IG \/f/lZS 2.091898207310220 | 2.082793751735617 2.084837094486877 2.32 0.03

4 \/2/32 \/E/ZSG 2.084980101241345 | 2.082683761801382 2.084980101242731 | 11.14 | 0.07

Table 2: The first fourth eigenvalues of (2.1) solved using linear elements on domain €, based on scheme 3.1.

k H h . Aicn A CPU, | cPU"

1 \/5/8 \/7/64 0.183103578919708 | 0.182966511922233 0.182973282940761 0.37 0.02

1 \/7/16 \/7/128 0.182999984078493 | 0.182964807413117 0.182973282661870 1.66 0.02

1 \/7/32 \/7/256 0.182973282649468 | 0.182964379709057 0.182973282649819 7.55 0.05

2 \/5/8 \/7/64 0.902722938388933 | 0.894134444101383 0.894965363626095 0.36 0.02

2 \/7/16 \/7/128 0.897087899512647 | 0.893832650873214 0.894941335725347 1.69 0.02

2 \/7/32 \/7/256 0.894937883634208 | 0.893717985383333 0.894937883634200 7.67 0.05

3 \/5/8 \/7/64 1.701946204490103 | 1.688840311680806 1.665061852769322 0.36 0.02

3 \/7/16 \/7/128 1.692214637235342 | 1.688661107773249 1.689125207477825 1.66 0.02

3 \/7/32 \/7/256 1.689540378763166 | 1.688615730973038 1.689540378764314 7.68 0.04

4 \/7/8 \/7/64 3.304885179800326 | 3.219389751051097 3.223432266030927 0.40 0.02

4 \/5/16 \/5/128 3.241311541143945 | 3.218244256049463 3.223895724733414 1.69 0.02

4 \/5/32 \/5/256 3.223904609238326 | 3.217956122839084 3.223904609239786 7.72 0.04
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