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ABSTRACT: The purpose of this article is to propose numerical solution and analyze the discontinuous 

Galerkin finite element methods of the Steklov eigenvalue problem. We provide a two-grid discretization scheme 

of discontinuous Galerkin method based on the shifted-inverse iteration. With the scheme, the solution of the 

Steklov eigenvalue problem on a fine grid is reduced to the solution of the Steklov eigenvalue problem on a 

much coarser grid and the solution of a linear algebraic system on the fine grid. Numerical results are provided 

to validate our theoretical findings. 
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I.  INTRODUCTION  
Steklov eigenvalue problems in which the eigenvalue parameter appears in the boundary condition, 

arise in a number of applications. For instance, such spectral problems are found in the study of surface waves 

[1], in the stability of mechanical oscillators immersed in a viscous fluid [2], and in the vibration modes of a 

structure in contact with an incompressible fluid [3]. In recent years, more and more scholars studied the 

numerical methods for Steklov eigenvalue problems [4-9]. 

Finite element methods are the most commonly used numerical methods for solving eigenvalue 

problems. However, The first introduction of the discontinuous Galerkin(DG) method was analyzed in Reed and 

Hill for the approximation of linear hyperbolic problems. The main feature of DG method is that the test 

functions are discontinuous along the edges (or faces) of the mesh. DG method enjoys the following advantages 

such as local mass conservation, combination coupled with other methods easily, hp-adaptivity, working on 

polygonal meshes. Consequently, DG methods have been developed for many problems, and we cite as a 

minimal sample [10-13]. Moreover, DG methods for the eigenvalue problems have been discussed in many 

papers, for example, Laplacian eigenvalue problem [14], Steklov eigenvalue problem [15], biharmonic 

eigenvalue problem [16-17], transmission eigenvalue problem [18-19] and Maxwell eigenvalue problem [20-

21]. 

In recent years, DGFEM have gained much interest due to their ease of treatment of highly 

unstructured meshes and inhomogeneous boundary conditions. The DGFEM have been attractive due to their 

flexibility in handling general meshes, non-uniformity in degree of approximation and capturing the rough 

solutions more accurately. Hence, the DGFEM has been developed and applied to solve various problems, for 

example, elliptic problems [22-23], hyperbolic problems [24-26], Navier-Stokes equations [27-28], etc. 

In this work, we will further study the symmetric interior penalty discontinuous Galerkin methods 

(SIPG) for the Steklov eigenvalue problem. The main difficulty of the theoretical analysis stems from the 

complexity of bilinear forms of the SIPG method and its nonconformity. For addressing this problem, we 

rewrite the SIPG method in a discontinuous way by introducing a lifting operator, and then decompose the error 

into a conforming and nonconforming parts that are estimated separately. Note that these techniques have been 

applied for source problems [29] and Laplace eigenvalue problems [30]. 

Based on the above work, the remaining part of our article is arranged as follows: In Section 2, we first 

introduce the model problem and then describe the SIPG method and its error estimates. In Section 3, establish a 

two-grid discretization scheme of DGFEM based on the shifted-inverse iteration and the optimal convergence 

for the proposed scheme. In Section 4, conduct a theoretical analysis, that is to say, a priori error estimates of 

DGFEM for the source problem and the eigenvalue problem are presented. Finally, some numerical 

experimental results demonstrating our theoretical results are provided in Section 5. 

Let       and        denote Sobolev spaces on   and    with real order  , respectively. The norm 

in        and        are denoted by      and        , respectively.            . 
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In this paper, we will write     to indicate that      with   being a generic positive constant 

independent of the mesh diameter which may take different values in different contexts,  and write       when 

     for some positive constant   for simplicity. 

 

II.  PRELIMINARIES 
We consider the following Steklov eigenvalue problem: 

             
  

  
                                                                       

where      is a bounded polygonal domain with Lipschitz continuous boundary   ,  
  

  
 is the outward 

normal derivation on   . 

The variational problem associated with (2.1) is given by: Find      and          , such that 

                                                                                           

where 

       ∫  
 

                    ∫  
  

     

             
 
          

It is clear that        is symmetric, continuous and      - elliptic bilinear form on            . 

Let        be a family of regular triangulations of  . Let   stand for the mesh-size, namely   
             is the diameter of   , with     being the diameter of the triangle  . The diameter of an edge   

is denoted by   , and the set of edges of elements      
    

  where   
  denotes the interior edges set and   

  

denotes the set of edges lying on the boundary   . We denote the average     and jump       of   on   by  

    
 

 
                                

where                             is the unit outer normal vector from    towards to   . 

If     
 , define the average and jump of   on   as follows: 

               
Define the DGFEM space: 

                             
where       denotes the space of polynomials defined on   with degree less than or equal to    . Introduce 

the piecewise    function space of degree  : 

                                 
The DGFEM discretization of (2.2) is to find      and        , such that 

                                                                                          
where  

          ∑  

    

∫ 
 

                 ∑  

    
 

∫ 
 

              

 ∑  

    
 

∫ 
 

               ∑  

    
 

 

  

∫ 
 

               

          ∑  

    
 

∫ 
 

       

 

where   is the interior penalty parameter. We choose   to be sufficiently large to have coercivity. It is clear that 

the  discretization (2.3)  is  symmetric  which  is called  symmetric  interior  penalty  Galerkin  method (SIPG) in 

DGFEM. 

Introduce the sum space               endowed with DG norm 

       
  ∑  

    

(          
           

 )  ∑  

    
 

 

  
             

  

and define the other norm on         (  
 

 
) by 

       
         

  ∑  

    
 

              

 
 

Note that      is equivalent to      on   . 

In order to show that the discretization (2.3) is stable, first we will show that         is coercive on 

     . It is easy to know that the following continuity and coercivity properties hold: 
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                   (  

 

 
)                                        

     
                                                                                        

Proof. Combining the Cauchy-Schwarz inequality, we obtain inequality (2.4). For convenience, for any    
  , we set 

          ∑  

    

        
  ∑  

    

       
 

  ∑  

    
 

∫ 
 

               ∑  

    
 

    

 
 
           

 

            

                                     

To show the coercivity we need to bound the potentially negative terms by the positive terms. We first estimate 

the third term. Using Cauchy-Schwarz inequality, the inverse inequality and Young’s inequality, we deduce that 

∑  

    
 

∫ 
 

               ∑  

    

∫  
     

              

 ∑  

    

   

 
                 

 
 
               

 ∑  

    

   

 
               

 
 
               

 ∑  

    

√            

 
 
               

 ∑  

    

(          
  

 

  
   

 
 
               

 )

 

and taking            and                      we deduce 

          ∑  

    

        
  ∑  

    

       
 

  ∑  
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              ∑  

    
 

    

 
 
           

 

 ∑  

    

         
         

             
 

 
 

  
   

 
 
               

      

 
 
               

  

 ∑  

    

(               
     

 

  
    

 
 
               

         
 )

       

  ∑  

    

(        
         

      

 
 
               

 )               

       
                                                                                                      

So the coerciveness of         is valid. 

We consider the following source problem (2.7) associated with (2.2) and the DG approximate source 

problem (2.8) associated with (2.3), respectively. 

Find         such that 

                                                                                           

Find       such that  

                                                                                            

Since        and         are continuous and coercive on       and   , respectively.        and         are 

bounded, from Lax-Milgram Theorem we know that (2.7) and (2.8) admit the unique solution   and   , 

respectively. 

We now recall the following regularity estimates for the above source problem [31]. 
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Lemma 2.1. If         , the solution   of the source problem (2.7) satisfies            with       
 

 
  

and  

                                                                                              

For the case that    
 

     , we have            and  

            
 
   

                                                                             

Let   and    be the solution of (2.7) and (2.8), respectively, then the SIPG approximation (2.8) is 

consistent: 

                                                                                         

Proof. Applying Green’s formula elementwise in   , and using the fact that ∑      ∫  
  

          

∫  
  

            ∫  
  

             and ∫  
 
            on inner edge  , we deduce 

  ∑  

    

∫ 
 

          

 ∑  

    

∫ 
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∫ 
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∫  
  

  

  
    

 ∑  

    

∫ 
 

             ∑  

    

∫  
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             ∑  

    
 

∫ 
 

             ∑  
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 ∑  

    

∫ 
 

             ∑  

    
 

∫ 
 

             ∑  

    
 

∫ 
 

            

 ∑  

    
 

 

  

∫ 
 

              ∑  

    
 

∫ 
 

    

 

which means that 

                                                                                          

It is obvious that            , then subtracting (2.8) from (2.12) we get (2.11). 

Then, thanks to Lemma 2.1, for the source problem (2.7), let         , we can define the solution 

 

operator             
 

           as 

Then, thanks to Lemma 2.1, for the source problem (2.7), let         , we can define the solution 

operator             
 

           as  

                                                                                         

Define the operator           
 

 
 

 

     , such that 

         
Similarly, from (2.8) we define a discrete solution operator     

         as 

                                                                                         

and the discrete operator                     , such that 

           
where     is the restriction of    on   . 

Hence, (2.2) and (2.3) has the following equivalent operator form, respectively: 

                                                                                           

                                                                                          

where   
 

 
    

 

  
. In this paper,  ,    and  ,    are all called eigenvalues. 

From the definition of    and (2.5), noticing that       is equivalent to      on   , we can derive that 

      
                                                       

which yields 
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Lemma 2.2. Suppose that               
 

 
  and         , then there holds 

      
  

 
 
  
           

   
                                                           

Introduce the auxiliary problem: find         such that 

                                                                                          

From the elliptic regularity estimates for homogeneous Neumann boundary problem, we know that the 

following regularity estimate holds:         , the solution   of (2.18) belongs to           
 

 
  and 

satisfies 

                                                                                            

Let       denote the linear interpolation of   on   . 

 

Lemma 2.3. Suppose that   and     be the solution of (2.7) and (2.8), respectively,               
 

 
 , 

then there hold 

                                                                                    

Proof. For any fixed        , by using the consistency of DG method, (2.11) and the Schwarz inequality we 

deduce 

                                 

                 ∑  

 

∫ 
 

                     

                  ∑  

 

∫ 
 

                     

                 ∑  

 

                           

                   

From the trace inequality, the interpolation estimate, the definition of DG norm and (2.20), we get 

∑ 

 

                            ∑  

 

               

  
 
             

 (∑  

 

   

 
 
             

 )

 
 

        

                

                 

Substituting (2.23) into (2.22) and using the Riesz representation theorem, we get (2.21). The proof is 

completed. 

 

Theorem 2.1. Suppose that   and     be the solution of (2.7) and (2.8), respectively,               
 

 
 , then there hold 

                                                                                       

Proof. From (2.5), (2.11), the definition of         and the Schwarz inequality, it is obtained that 

          

 
                 

                    
  ∑  

 

∫ 
 

          [       ]   

             
       ∑  

 

             
  

 
 
  
  [       ]   

 
    

 

                    

Derived from inverse estimate, trace estimate, interpolation estimate and (2.21), we deduce 

∑  
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  [       ]                                                 
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 (∑  

 

   

 
 
 [       ]     

 )

 
 

                                          

                                                                                   
then using (2.25), (2.26), triangle inequality and the interpolation error estimate we obtain (2.24), the proof is 

completed. 

Let        denote the linear interpolation of    on   . 

 

Theorem 2.2. Suppose that   and     be the solution of (2.7) and (2.8), respectively,               
 

 
 , then there hold 

                                                                                    

Proof. Consider the source problem of the dual problem of equation (2.2)                       , 

where       ∫  
  

    , for any fixed         , using (2.11) we obtain 

                                    

            
         ∑  

 

∫ 
 

[      ]                                       

Then 

 ∑  

 

∫ 
 

                        ∑  

 

           
 
    

             
  

 
 
  

 

 ∑  

 

  

  
 
                             

  
 
 
  

 

 ∑  

 

  

  
 
  [      ]             

  
 
 
  

                          

 ∑  

 

  

  
 
  [      ]              

                        
Substituting (2.29) into (2.28), and using the Riesz representation theorem we get (2.27).                                              

Assume that   is the  th eigenvalue of (2.2), and the algebraic multiplicity is equal to  ,      
                  . When                   [5],   eigenvalues     ,       ,  ,          of 

(2.3) will converge to  . Let      be the space spanned by all eigenfunctions corresponding to   and       be 

the direct sum of the eigenspaces corresponding to all eigenvalues of (2.3) that converge to  . We have the 

following error estimates [32]. 

 

Theorem 2.3. We assume that             (  
 

 
)            , then there holds 

                                                                                            

Let          be an eigenfunction of (2.3), then there exists        such that 

                                                                                           

                                                                                           

Proof. Let   and    be the  th eigenvalue of (2.2) and (2.3), respectively, and            From Theorem 

7.3 [15] we have 

       ∑  

     

     

   (           )                    
                                      

where             are the basis functions for     . Then, from (2.12), (2.11) and (2.4), we deduce 

                                                

                      

                       

                         

                                   

Noting that            , using Theorem 2.2 and Theorem 2.1, we get 
                     

                
            

    
                

                                                          

Substituting (2.34) and (2.35) into (2.33), we obtain (2.30). 
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Since             , from the spectral approximation theory we know that there exists        

such that 

                                                                                       

Then (2.31) follows directly from (2.36) and (2.35). 

Since       and          , using the triangular inequality, (2.17), (2.30) and (2.31), we deduce 
                     

                           

                        

                            

               

 

i.e., (2.32) is valid. The proof is completed. 

 

III.  TWO-GRID DISCRETIZATION  
Let     

  
  be an family of regular meshes of  ,        , and let     be the DG space defined on    

. 

Denote    
   ,       . Now, for the eigenvalue problem (2.3) we give the following two-grid 

discretization scheme of DGFEM based on the shifted inverse iteration. 

Scheme 3.1. Given the iterative times  . 
Step 1: Solve (2.3) on   : Find              such that            and 

                                                                                         

Step 2:                    
Step 3: Solve a linear system on    : Find        such that 

   
               

          
                                                                

Let     
  

        
  

Step 4: Compute the Rayleigh quotient  

    
   

         

   
         

 

Step 5: If    , then output          , stop; else,       and return to Step 3. 
From (2.11) we define the Ritz-Galerkin projection operator             by 

                                                                                            

Hence, for any         

                                                   

Then,                  , thus       . 

We first give the following lemmas to prepare for the error analysis. 

 

Lemma 3.1. Let       be an eigenpair of (2.2), then for any      and       , the Rayleigh quotient 

     
       

    
  such that 

       

    
    

           

    
   

      
 

    
                                                      

Proof. From (2.11), we deduce 

                               
therefore, 

                       

                                                  
                                                  

                

 

By dividing by     
  on both sides of the above identity, we have (3.4). 

 

Lemma 3.2. For any nonzero       , 

 
 

   
 

 

   
   

     

   
  

 

   
 

 

   
   

     

   
                                        

Proof. 
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i.e., the first inequality holds. Similarly, one can deduce the second inequality. Note that Lemma 3.2 holds in 

any normed space. 

Let         be the  th eigenpair of (3.1), then           derived from Scheme 3.1 is the  th eigenpair 

approximation of (2.2). In what follows we also denote                    ,              
     

   . 

 

IV.  THE THEORETICAL ANALYSIS 
Next, we will prove the error estimates and the convergence of            derived from Scheme 3.1. 

Our analysis is based on the following crucial property of the shifted-inverse iteration in DGFEM. 
In the following discussion, let         and             denote the  th eigenpair of (2.2) and (2.3), 

respectively, and    
 

  
,      

 

    
,            ,              . 

Denote               
    

              . 

 

Lemma 4.1. Let          be an approximation of the  th eigenpair       of (2.2), where     is not an 

eigenvalue of   , and       with           . And let    
    

          
. Suppose that 

        
       

           
 

 
   

            
 

 
           

 

 
  for                        

   
        is the separate constant of 

the eigenvalue  . 

           and      satisfy 

        
      

  
  

        

                                                                  

Then 

    (        )  
 

 
   

         
            (        )                                            

Proof. Let        
  be eigenfunctions of    satisfying                    Then 

   ∑  

 

   

               

Since    is not an eigenvalue of   , from (4.1) we can obtain 

(       ) 
  (       )            ∑  

 

   

       

       

 (       )                                 

Using the triangle inequalities and the condition     , we have 

                          
 

 
 

 

 
 

 

 

                                    
 

 
 

 

 
 

 

 

 

where               , and thus we obtain 

        
 

 
                                                                            

Because the operator    is self-adjoint with respect to       , in fact, for          , from the symmetry of 

        and                we have 
                                           

                                  
 

and          , therefore, for          , there holds 
                                                    

                                    
                                             

Noticing that        
     

 is an orthonormal basis of       with respect to the        inner product       , from 

   
    

          
 , (4.3), (4.5), (2.17) and (4.4) we derive 

 (       )   ∑  

     

   

       

       

 (       )                          

  ∑  

               

       

       

 (       )                                            
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Taking the norm on both sides of (4.3), and noting that    
    

          
 , the condition      and (4.5), we get 

                   ∑  

 

   

       

       

                   

 
 

          

(∑  

 

   

(
       

       

               ))

 
 

 
 

          

   
         

 |
       

       

| ( ∑  

     

   

           )

 
 

 
 

          

   
         

 |
       

       

|

 
 
 
 
 

   (   ∑  

     

   

              )

 
 
 
 
 

    

 
 

           

   
         

 |
       

       

|

                         

From (4.6) and (4.7) we have 
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The proof is completed. 

Next, we shall use Lemma 4.1 and Theorem 2.2 to analyze the error of two-grid discretization Scheme 

3.1. We first consider the case of    . Denote     ,     . 

 

Theorem 4.1. Suppose that                   , and           . Let    
    

   be an approximate 

eigenpair obtained by Scheme 3.1(   ) and   is sufficiently small, then there exists          such that 

    
       

                                                                                   

    
          

                                                                                 

  
                                                                                        

Proof. We use Lemma 4.1 to complete the proof. Select    
 

  
         and    

    

          
  From (2.31) we 

know that there exists  ̅        such that 

  ̅           

Using the triangle inequality and (2.31) we can deduce that 
                     ̅          ̅        

                                                               

therefore, 

   
        

               

when   is small enough, the condition      in Lemma 4.1 is valid. 

From (2.29) we can deduce that  

      
       

      
      

 

 

        
       

      

      
 

 
                    

 

that is, the condition      in Lemmma 4.1 holds. 

By (2.14) we see that Step 3 in Scheme 3.1 is equivalent to the following: 

                 
                     

  
  

  

        
  i.e., 

   
       

    
         

  
  

        

 

Note that   
       and    differ by only one constant, then, Step 3 in Scheme 3.1 is equivalent to 

   
       

       
  

  

        

 

From the above arguments we see that the conditions of Lemma 4.1 hold. 

Since        is a q-dimensional space, there must exist           such that  

   
              

          

For                    according to (2.32) we get 

          |
 

  

 
 

    

|  
       

      

       

  (               )                                                         

Therefore, from Lemma 4.1, (4.11) and (4.12) we can deduce that 

   
           (  

        )

 
 

 
   

         
                            

                                      

From (2.31) we know that there exists            such that                          and 

               

then 

   
          

                          

that is (4.8). 
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Next, we will prove (4.9). From (2.28) we can deduce that 

                  

which together with (4.13) yields 

   
             

                                  

Finally, we use Lemma 3.1 to derive (4.10). From Step 4 of Scheme 3.1, Lemma 3.1, (4.8) and (4.9) we can 

deduce that 

   
      |

     
       

     

   
   

 
   

    
       

     

   
   

 
| 

      
      

         
         

 ) 

                                             
The proof is completed. 

 

V.  NUMERICAL EXPERIMENTS 
In this section, we will report some numerical experiments for Scheme 3.1 to validate our efficiency of 

the DG-multigrid method for solving the Steklov eigenvalue problem. We use MATLAB 2017a to solve Our 

program are compiled under the package of Chen [33]. The test domains are set to be the unit square     

       with vertices are (0,1), (1,0), (0,0), (1,1) and the L-shaped domain               
 

 
     

 

 
   

 

 
   , 

respectively. The numerical results are listed in Table 1 and Table 2, respectively. In Table 1 and Table 2,   

stands for the mesh size. And the four smallest approximate eigenvalues on    are 
                                   
                                   

 

The four smallest approximate eigenvalues on     are 
                                   
                                   

 

     : The  th eigenvalue of (2.2) obtained by directly solving using the      command on the grid   ; 

  
  : The  th eigenvalue derived from Scheme 3.1; 

     ( ): The CPU time ( ) used to solve the eigenvalue problem directly on the fine grid   ; 

     ( ): To calculate the CPU time ( ) from the program started running to the current using Scheme 3.1. 

This paper presents a study on the two-grid discretization of Steklov eigenvalue problems using the 

discontinuous Galerkin method. Based on our approach, we solve the eigenvalue problem on the fine grid    

using linear elements and also provide solutions using Scheme 3.1 Numerical experiments are conducted on    

and   . From Table 1 and Table 2, it can be seen that when the mesh size increases, the advantages of the two-

grid discretization method with shifted inverse iteration become more apparent, indicating the efficiency of our 

approach. That is, comparing to directly solving the eigenvalue problem on the fine grid, the two-grid 

discretization method based on shifted inverse iteration requires less CPU time. Therefore, this method has 

strong practical value for solving Steklov eigenvalue problems. 
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Figure 1: The error curves of the approximation for the first fourth eigenvalues of (2.2) obtained by solving on 

linear element   . 

 
Figure 2: The error curves of the approximation for the first fourth eigenvalues of (2.2) obtained by solving on 

linear element   . 

Table 1: The first fourth eigenvalues of (2.1) solved using linear elements on domain   , based on scheme 3.1. 

 

                  
            

1 √ /8 √ /64 0.240211716943679 0.240081216887906 0.240087584025356 0.53 0.03 

1 √ /16 √ /128 0.240112826863705 0.240079619065521 0.240087583647472 2.34 0.03 
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1 √ /32 √ /256 0.240087583631145 0.240079218879418 0.240087583631562 11.05 0.07 

2 √ /8 √ /64 1.497796681403516 1.492394549965922 1.492682256586994 0.54 0.02 

2 √ /16 √ /128 1.493737311068824 1.492326033500083 1.492669551372664 2.30 0.03 

2 √ /32 √ /256 1.492666919245250 1.492308863965837 1.492666919245329 11.20 0.07 

3 √ /8 √ /64 1.497796681403516 1.492394549965922 1.492682256586994 0.54 0.02 

3 √ /16 √ /128 1.493737311068824 1.492326033500083 1.492669551372664 2.30 0.03 

3 √ /32 √ /256 1.492666919245250 1.492308863965837 1.492666919245329 11.20 0.07 

4 √ /8 √ /64 2.119021802190831 2.083232720433984 2.081623917337848 0.53 0.03 

4 √ /16 √ /128 2.091898207310220 2.082793751735617 2.084837094486877 2.32 0.03 

4 √ /32 √ /256 2.084980101241345 2.082683761801382 2.084980101242731 11.14 0.07 

 

Table 2: The first fourth eigenvalues of (2.1) solved using linear elements on domain   , based on scheme 3.1. 

 

                  
            

1 √ /8 √ /64 0.183103578919708 0.182966511922233 0.182973282940761 0.37 0.02 

1 √ /16 √ /128 0.182999984078493 0.182964807413117 0.182973282661870 1.66 0.02 

1 √ /32 √ /256 0.182973282649468 0.182964379709057 0.182973282649819 7.55 0.05 

2 √ /8 √ /64 0.902722938388933 0.894134444101383 0.894965363626095 0.36 0.02 

2 √ /16 √ /128 0.897087899512647 0.893832650873214 0.894941335725347 1.69 0.02 

2 √ /32 √ /256 0.894937883634208 0.893717985383333 0.894937883634200 7.67 0.05 

3 √ /8 √ /64 1.701946204490103 1.688840311680806 1.665061852769322 0.36 0.02 

3 √ /16 √ /128 1.692214637235342 1.688661107773249 1.689125207477825 1.66 0.02 

3 √ /32 √ /256 1.689540378763166 1.688615730973038 1.689540378764314 7.68 0.04 

4 √ /8 √ /64 3.304885179800326 3.219389751051097 3.223432266030927 0.40 0.02 

4 √ /16 √ /128 3.241311541143945 3.218244256049463 3.223895724733414 1.69 0.02 

4 √ /32 √ /256 3.223904609238326 3.217956122839084 3.223904609239786 7.72 0.04 
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