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I. INTRODUCTION 
The notion of BCK and BCI-algebras are first introduced by Imai and Iséki [6]. Later on, in 1984, Komori [8] 

introduced a notion of BCC-algebras, and Dudek ([3], [13]) redefined the notion of BCC-algebras by using a 

dual form of the ordinary definition in the sense of Komori. Accordingly, Dudek and Zhang [9] introduced a 

new notion of ideals in BCC-algebras and described connections between such ideals and congruences. 

Prabpayak and Leerawat [14] introduced a new algebraic structure which is called KU-algebra. They gave the 

concept of homomorphisms of KU-algebras and investigated some related properties. For more details, see 

([13], [14]). Over the last 70 years, algebraic coding has become one of the most important and widely applied 

aspects of abstract algebra. Coding theory forms the basis of all modern communication systems, and is the key 

to another area of study, Information Theory, which lies in the intersection of probability and coding theory. 

Algebraic codes are now used in essentially all hardware-level implementations of smart and intelligent 

machines, such as scanners, optical devices, and telecom equipment. It is only with algebraic codes that we are 

able to communicate over long distances, or are able to achieve megabit bandwidth over a wireless channel. 

Coding theory is the study of methods for efficient and accurate transfer of information from one party to 

another. Various type of codes and their connections with other mathematical objects have been intensively 

studied. The idea of coding theory is to give a method of how to convert the information into bits, such that 

there are no mistakes in the received information, or such that at least some of them are corrected. On this 

account, encoding and decoding algorithms are used to convert and reconvert these bits properly. In Coding 

Theory, a block code is an error-correcting code which encodes data in blocks. In the paper [7], the authors 

introduced the notion of BCK-valued functions and investigate several properties. Moreover, they established 

block-codes by using the notion of BCK-valued functions. They show that every finite BCK-algebra determines 

a block-code constructed a finite binary block-codes associated to a finite BCK-algebra.  In [5] provided an 

algorithm which allows to find a BCK-algebra starting from a given binary block code. In [16] the authors 

presented some new connections between BCK- algebras and binary block codes. Mostafa et al in [10] applied 

the code theory to KU- algebras and obtained some interesting results. In this paper, we provided an algorithm 

which allows to find a KU-algebra starting from a given binary block code. 

II. Preliminaries 
Now, we recall some known concepts related to KU-algebra from the literature, which are helpful in further 

study of this article. 

 

Definition 2.1([13], [14]). (KU-algebra) Let X  be a nonempty set with a binary operation   and a constant 0 . 

The triple )0,,( X is called a KU-algebra, if for all Xzyx ,,  the following axioms are satisfied. 

       (
1

ku )  0)]())[()(  zxzyyx , 

       (
2

ku )  00 x , 

       (
3

ku )  xx 0 , 

       (
4

ku ) 0 yx  and 0 xy  implies yx  , 

       (
5

ku ) 0 xx . 
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      On a KU-algebra X  we can define a binary relation   on X  by putting 0 xyyx . Then 

),( X is a partially ordered set and 0 is its smallest element. Thus )0,,( X satisfies the following conditions. 

For all Xzyx ,,   

      ( \
1

ku ) )()()( yxzxzy  ,   

      ( \
2

ku ) x0 ,   

      ( \
3

ku ) xyyx  ,  implies yx  , 

      ( \
4

ku ) xxy  . 

 

Theorem2.2 ([13], [14]). In a KU-algebra X . The following axioms are satisfied. For all Xzyx ,, , 

      (1) yx  imply zxzy  ,  

      (2) )()( zxyzyx  , for all Xzyx ,, , 

      (3) yxxy  ))(( . 

 
Example 2.3. Let X = {0, 1, 2, 3, 4} be a set with a binary operation   defined by the following table 

  

* 0 1 2 3 4 

0 0 1 2 3 4 

1 0 0 0 3 0 

2 0 1 0 3 0 

3 0 0 0 0 0 

4 0 1 0 3 0 

  

Table (1) 

Then )0,,( X  is a KU-algebra. 

 

Definition 2.4[6]. (Sub-algebra) A non-empty subset S  of a KU-algebra )0,,( X  is called KU-sub algebra of 

X if Syx   whenever Syx , . 

 

Definition 2.5[5]. A KU-algebra(X, ∗, 0) is said to be KU - commutative if it satisfies: ∀x, y∈ X, (y∗ x) ∗ x = 

(x∗ y) ∗ y. 

 

Definition 2.6[11]. A KU-algebra(X, ∗, 0) is said to be KU -positive implicative, if it satisfies: (z∗ x) ∗ (z∗ y) = 

z∗ (x∗ y), for all x, y, z in X.  

 

Definition 2.7[11]. A KU-algebra(X, ∗, 0) 0is called KU- implicative if x = (x∗ y) ∗ x, for all x, y in X.  

 

Definition 2.8[14]. (Homomorphism) Let )0,,( X  and )0,,(  X  be KU-algebras, a homomorphism is a 

map XXf :  satisfying )()()( yfxfyxf  for all Xyx , . 

 

Theorem 2.9[14]. Let f  be a homomorphism of KU-algebra X  into KU-algebra X  . It follows that                 

      (i)  If 0  is the identity in X  then )0(f  is the identity in X  . 

      (ii)  If S  is a KU-subalgebra of X  then )( Sf  is a KU-subalgebra of X  . 

      (iii) If S  is a KU-subalgebra of X   then )(
1

Sf


 is a KU-subalgebra of X . 
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Definition 2.10. (Lexicographic) Let the two posets ),(),(
2211

 SandS . The lexicographic order    on 

the Cartesian product 
21

SS   is defined by specifying that one pair is less than the other pair, 

i.e. ),(),(
2121

yyxx   iff  
22211111

yxandyxoryx   

We obtain a partial ordering   by adding equality to the ordering   on
21

SS  . 
 

Example 2.11. (Lexicographic Order) Let  ......,,,
1

cbaS   and 
1

  be the usual alphabetic order. Let 

 10....,,3,2,1,0
2
S  and 

2
 be the usual alphabetic order be the usual partial order  , 

then 104,,)10,()4,(sin,)2,()8,(
2211

 aaaaandbaceba . 
 

Now, we use some results literature from paper [10]. 

In what follows let A and X denote a nonempty set and a KU-algebra respectively, unless otherwise specified. 

Definition 2.12. A mapping  XAA :
~

 is called a KU-valued function (briefly, KU-function) on A . 

Definition 2.13. A cut function of A
~

, for Xq   is defined to be a mapping }1,0{:
~

AA
q

 such 

that 0*)(
~

1)(
~

)(  qxAxAAx
q

.        

    Obviously, 
q

A
~

 is the characteristic function of the following subset of A , called a cut subset or a q-cut of A
~

. 
 

Example 2.14. Let A ={x, y, z} and let X = {0, a, b, c, d} is a KU-algebra with the following Cayley table: 

 

* 0 a b c d 

0 0 a b c d 

a 0 0 b b a 

b 0 a 0 a d 

c 0 0 0 0 a 

d 0 0 b b 0 

 

Table (2) 

The function XAA :
~

given by 















cba

zyx
A
~

  is a KU-function on A , and its cut subsets are  

     xAAAyAxAA
dcba
 ,,,,

0
 

Let   yxAyx 


;   ; for any Ax  , 


x is called equivalence class containing x . 

 

Lemma 2.15.  Let XAA :
~

be a KU- function on A . For every Ax  , we have  


 xxA inf)(
~

, that is  

)(
~

xA  the least element of the   to which it belongs. 

 

Definition 2.16. Let  nA ,.....,3,2,1  and X  be a finite KU-algebra. Then every KU-function  

XAA :
~

 on A  determines a binary block code V  of length n in the following way: To every


x , 

where Ax  , there corresponds a codeword 
nx

xxxV .....
21

 Such that 

 1,0)(
~

 jandAiforjiAxx
xji

. 

Let
nx

xxxV .....
21

 ,  
ny

yyyV .....
21

  be two code words belonging to a binary block-codeV . 

Define an order relation  
c

   on the set of code words belonging to a binary block- code V  as follows: 

niforyxVV
iiycx

,....,2,1                              …………….………………….…… (1) 
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III. Basic Results  

      Suppose that (X,  ) be a finite partial ordered set with the minimum element . We define a binary relation 

  on X as follows:  

              















.,)3(

,,,)2(

,,,)1(

otherwiseyyx

Xyxxyifyx

Xxxxxx





                                            …………………… (2)            

 

Proposition3.1. The algebra (X,*, ) is a KU-algebra through the previous notations. 

Proof: Conditions )(
2

ku , )(
3

ku , )(
4

ku and )(
5

ku  are satisfied. Now, we prove condition )(
1

ku  that 

is 0=z))*(x*z)*((y*y)*(x , for all x, y, z ∈ X. 

Case (1): at least one element is θ. 

(1) ;x   *)*(*=z))*(*z)*((y*y)*( yzzy ,  

(2) ;y   *)*(*=z))*(x*z)*((*)*(x zz , 

(3) .*)*()*(*)*(=))*(x*)*((y*y)*(x;z   yxyx  

Case (2): one element is comparable with another. 

(1) x ≤ y; ,*)*(*=z))*(x*z)*((y*y)*(x   yzzy  

(2) x ≤ z; ,*)*(*=z))*(x*z)*((y*y)*(x   yzzy   

(3) y ≤ x; ,*)*(*=z))*(x*z)*((y*y)*(x  zz  

(4) y ≤ z; .*)*(*=z))*(x*z)*((y*y)*(x   yzzy   

(5) z ≤ x; ,*)*(*=z))*(x*z)*((y*y)*(x   yzy  

(6) z ≤ y; ,*)*(*=z))*(x*z)*((y*y)*(x   zyzy  

Case (3): two elements are comparable with the third. 

    x ≤ y and z ≤ y;   zyzy *)*(*=z))*(x*z)*((y*y)*(x , etc. 

 

Proposition3.2. a KU-algebra (X,*, 0) through the previous notations, is a non-positive implicative algebra. 

Proof: we must prove condition in the above definition (2.6), that 

is Xzyxallforyxzyzxz  ,,,)*(*)*(*)*( . 

Case (1): at least one element is θ. 

(1) ;x ,*)*(**)*(*)*( yyzyzandyyyzz    

(2) ;y ,*)*(**)*(*)*(   zxzandxzxz  

(3) ;z ,*)*(**)*(*)*( yyzyzandyyyzz    

Case (2): one element is comparable with another. 

(1) x ≤ y; ,*)*( yyzandyyx   

(2) x ≤ z; ,*)*( yyzandyy   

(3) y ≤ x; .*)*(   zandyyx  

We have in Case 2  R.H.S L.H.S  ,then a KU-algebra (X,*, 0) is a non-positive implicative algebra. 

 

Proposition3.3. a KU-algebra (X,*, 0) through the previous notations, is an implicative and non-commutative. 

  

       We denote a KU-algebra with
n

C , if it has n elements. Suppose that V is a binary block code with n 

codewords of length n, then we have 
v

M (the related matrix of the code V), where 

})1,0({)(
},....,2,1{,, nnjijiv

MmM 


 with rows containing the codewords of V. 

Theorem3.4. Let a matrix 
V

M be a lower triangular with },....,2,1{,1 nim
ii

 , and 

}1,0{......;......1 
inikinik

xxxx  in V. through the previous notations, we have a set A with n 

elements, a KU-algebra X, and a KU-function  XA:f   such that f determines V. 
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Proof. We define on V  the lexicographic order that denoted by 
lex

  ,so we have (V,
lex

 ) is a 

totally ordered set. Suppose that V  = {
m

www ,......,,
21

}, with
nlexlexlex

www  .........
21

, 

then 00.....10
1
w  (number of zeros are (n-1) times) and 1.....1

imikn
xxw    ;

imik
xx ..... ∈{0,1}. 

We define also a partial order   on , then (V ,≤) is a partial ordered set with 
i

ww 
1

, 

i∈{1,2,……,n}, then 0
1
w  and 

n
w  is the maximal element in(V). If we define a binary relation 

]2[ on (V, ≤) as in Proposition 3.3. We have ),,(
1

wVX   as a KU-algebra and V is isomorphic 

to 
n

C  as KU-algebras. Then we consider VA   and f: A→V , f (w) = w be the identity map as a 

KU-function, then f provides a family of binary block code        

,1)(};1,0{;{  xfAfV
rrc

n

if and only if XrAxrxf  ,,0)( . 

    Suppose that },1,0{.......,0000.......1,1, 
iLikiLikkk

xxwherexxwnkVw   and number of 

zeroes are (k-2). 

If 










comparedbetcanwwwwww

wwww
x

jikjikjik

jikkji

ji
',0

01
 

 

A binary block code as in the previous Theorem can be generated by two or more algebras (see 

examples 3.5, 3.6, and 3.7). But a KU-algebra generates a unique binary block code using the 

algorithm in [10].  

 

Example 3.5. Let V = {1001, 1100, 1110, 1000} be a binary block code, using the lexicographic order, the code 

V can be written V = {1000, 1100, 1110, 1001} = },,,{
4321

wwww . With the following graph  

 
Fig. (1): A graph of code with 5 vertices and 7 edges. 

        In figure (1): },,,{
4321

wwww  are the set of vertices and { },{},,{},,{
413221

wwwwww } are the set 

of edges. 

        By using the previous theorem we define the partial order ≤ on V, then we get ,
1 i

ww   i∈{2,3,4} , 

32
ww   , 

2
w  can’t be compared with

4
w , and 

3
w can’t be compared with

4
w .then the operation [*] on V is 

defined by the following table: 

 

 

 

 

 

 
 

Table (3) 

         Then, V with the operation [*] is a KU-algebra. The same binary block code V can be obtained from a KU-

algebra ),,( A  
 

 1
w  

2
w  

3
w  4

w  

1
w  

1
w  

2
w  

3
w  4

w  

2
w  

1
w  

1
w  

3
w  4

w  

3
w  1

w  
1

w  
1

w  
4

w  

4
w  

1
w  

2
w  

3
w  

1
w  
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Table (4) 

With KU-function, f: V → V, f(x) = x. 

Example 3.6. Let V = {101000, 110000,101100, 111111, 100000, 111010} be a binary block code. Using the 

lexicographic order, the code V can be written V = {100000, 110000, 101000, 101100,111010, 111111} 

= },,,,,{
654321

wwwwww .With the following graph: 

 

Fig. (2): A graph of code with 6 vertices and 6 edges 

       In figure (2): },,,,,{
654321

wwwwww  are the set of vertices and 

{ },{},,{},,{},,{},,{
4365315221

wwwwwwwwww } are the set of edges. 

        By using the previous theorem we define the partial order   on V then we get ,
1 i

WW  i∈ {2, 3, 4, 5, 6}, 

2
W Can’t be compared with

3
W , 

2
W can’t be compared with

4
W , 

52
WW  , 

62
WW  , 

43
WW  , 

53
WW  , 

63
WW  , 

4
W can’t be compared with

5
W , and 

64
WW  .The operation [*] on V is defined by the 

following table: 

 

Table (5) 
 

       Then, V with the operation [*] is a KU-algebra. The same binary block code V can be obtained from a KU-

algebra ),,( B    

 
Table (6) 

 

 
θ a b c 

Θ θ a b c 

a θ θ b c 

b θ θ θ c 

c θ a b θ 
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With KU-function, f: V → V, f(x) = x.  

Example 3.7. Let V = {1010, 1100, 1011, 1000} be a binary block code, using the lexicographic order, the code 

V can be written V = {1000, 1100, 1010, 1011} = },,,{
4321

wwww . With the following graph 

 

Fig. (3): A graph with 4 vertices and 3 edges. 

In figure (3): },,,{
4321

wwww  are the set of vertices and { },{},,{},,{
433121

wwwwww } are the set of 

edges. 

        By using the previous theorem we define the partial order ≤ on V, then we get 
i

WW 
1

 

,i∈{2,3,4},
2

W can’t be compared with
3

W  ,
2

W can’t be compared with
4

W ,and 
43

WW  .The operation [*] on 

V is defined by the following table: 

 

 

 

Table (7) 

Then, V with the operation [*] is a KU-algebra. 

The same binary block code V can be obtained from a KU-algebra ),,( C  

 

 

 

 

 

  

Table (8) 

With KU-function, f: V → V, f(x) = x. 

 

Proposition 3.8. Suppose that })1,0({)(
,

},...,2,1{

},.....,2,1{, mn

mj

niji
McC 




 is a matrix with rows lexicographic 

ordered in the ascending sense, so there is a matrix mnqMsS
qqjiji




}),1,0({)(
},....,2,1{,,

 , such that 

S is a lower triangular matrix, with },...,2,1{,1 qiS
ii

  and C becomes a sub matrix of the matrix S. 

Proof. Suppose that we add in the right side of the matrix C (from the left to the right) the new rows of the 

form 
nnn

01.....00,.......,00...01,00.....10 , so we have a new matrix S with n + m columns and n rows. Suppose 

that we add in the top of the matrix S the following n rows: 

1......000,,.........00...010.....00,00...100...00

111


 mnmnmn

.We get the required matrix C. 

 

 1
w

 2
w

 3
w

 4
w

 

1
w  

1
w  

2
w  

3
w  4

w  

2
w  

1
w  

1
w  

3
w  4

w  

3
w  

1
w  

2
w  

1
w  

4
w  

4
w  

1
w  

2
w  

1
w  

1
w  

 
θ a B c 

θ θ a B C 

a θ θ B c 

b θ a Θ c 

c θ a Θ θ 
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Theorem 3.9. Let V be a binary block code with n codewords of length  m , n≠m, or a block-code with n 

codewords of length n such that }1,0{......;......1 
inikinik

xxxx  is not in V, or a block-code with n  

codewords of length n such that the matrix 
V

M  is not lower triangular. Then Through the previous notations, 

we have a natural number q ≥ max {m, n}, a set A with m elements and a KU function f: A →Cq  such that the 

obtained block code 
Cn

V  contains the block code V with 1s as a first digit in its codewords .  

Proof. Suppose that V= },,,{
4321

wwww , be a binary block code, with codewords of length m. We consider 

the codewords 
n

www ,........,,
21

lexicographic ordered
nlexlexlex

www  .........
21

. Suppose that 

})1,0({
, mn

MM   be the associated matrix of V with the rows 
n

www ,........,,
21

 in this order. By using 

Proposition 3.8, we lengthen the matrix M to a square matrix M  ∈ mnqM
q

}),1,0({  , such that 

},....,2,1{,,
)(

qjiji
mM


 is a lower triangular matrix with ,1

ii
m  , for all  i∈{1,2,...,q}.If the first column of 

the matrix M   is not 11….1(q-times), then we insert the column 11…..1(q+1 times) as a first column and the 

row 10….0 (number of zeroes =q-times) as a first row. Applying Theorem 3.2 for the matrix M  , we obtain a 

KU-algebra },.....,,{
21 qq

xxxC   ,with 
1

x  = θ the zero of the algebra 
q

C  and a binary block code
cq

V . 

Supposing that the columns of the matrix M  have in the new matrix M   with 1s as a first digit, so 

.},......,,{
21 qmjjj

CxxxA  The KU-function },.....,2,1{,)(,: mixxfCAf
ijijq

 , determines 

the binary block-code 
cq

V   such that the code 
cq

V  contains the block code V with 1s as a first digit in its 

codewords. 

  

Example 3.10. Let V = {01101, 00001, 00101, 01111} be a binary block code. By using the lexicographic order, 

the code V can be written V = {00001, 00101, 01101, 01111} = },,,{
4321

wwww . We organize the codewords 

in the associated matrix M, such that }).1,0({
5,4

MM
V
 we get, 

  





























11110

10110

10100

10000

V
M  

By using proposition 3.8, we create a lower triangular matrix. 

 

              





























100011110

010010110

001010100

000110000

F   and 

        





























































100011110

010010110

001010100

000110000

000010000

000001000

000000100

000000010

000000001

S
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The rows of the matrix S doesn’t begin with 1.by using proposition 3.8, we add 11…..1(10-times) as a first 

column and the row 10….0 (number of zeroes is 9-times) as it don’t exist in the first row of the matrix S. so we 

get the following:  

                                                        


































































1000111101

0100101101

0010101001

0001100001

0000100001

0000010001

0000001001

0000000101

0000000011

0000000001

S  

The binary block code }.,,.........,{
1021

wwwW   , whose codewords are the rows of the matrix S  , 

determines a KU-algebra (X,*,
1

w ).  

Suppose that },,,,,{
654321

wwwwwwA   and 
ii

wwfXAf  )(,: ,i∈{1,2,3,4,5,6} be a KU – 

function which determines the binary block code U= {100001, 110000, 101000, 100100, 100010, 100001, 

100001,100101,101101,101111}.We have the code V included in the code U but it contains 1s as a first digit . 

IV. Relationship between the ordered relation on KU-algebra and partial ordered set 

Definition 4.1. Suppose that ),( P is a partially ordered set. For Pq  , we define a mapping 

}1,0{: PP
q

such that for each Pb  , we have 1)( bP
q

if and only if bq  , Using this map, a 

codeword 
nx

xxxv ....
21

  of a binary block-code V can be determined as follow:  Jx
i
  if and only if  

}.1,0{,)(  jandSiforjiP
x

 

 

From a given partially ordered set we catch binary block codes as showing in the following examples:  

 

Example 4.2. Suppose that P = {0, 1, 2, 3} is a set with a partial order over P as presented in the following 

figure (4) 

 
Fig. (4): partial order ( ,P ) 

We catch the following table by using definition 4.1: 

 

p
P  0 1 2 3 

0 1 0 0 0 

1 1 1 0 0 

2 1 0 1 0 

3 1 0 1 1 

Table (9) 
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From table (9) we get the following code }1011,1010,1100,1000{
1
V , and we get following figure (5) from 

code
1

V . 

 

Fig. (5): order relation ),(
1 C

V   

 

Example 4.3. Suppose that P= {0, 1, 2, 3, 4, 5} is a set with a partial order over P as presented in the following 

figure (6) 

 

                                      Fig. (6): partial order ( ,P ) 

We catch the following table by using definition4.1: 

 

p
P  0 1 2 3 4 5 

0 1 0 0 0 0 0 

1 1 1 0 0 0 0 

2 1 1 1 0 0 0 

3 1 1 0 1 0 0 

4 1 0 0 0 1 0 

5 1 0 0 0 1 1 

 

Table (10) 

From table (10) we get the following code }100011,100010,110100,111000,110000,100000{
2
V , and 

we get following figure (7) from code
2

V . 

 

Fig. (7): order relation ( ),(
2 C

V  ) 

Now, we generate binary block codes from KU-algebras by using definition 2.16 through the following 

examples. 

 

Example 4.4.Suppose that  X  =  {0, 1, 2, 3} is  a KU-algebra and we represent the order on X as shown in  

figure (5). 
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* 0 1 2 3 

0 0 1 2 3 

1 0 0 2 3 

2 0 1 0 3 

3 0 1 0 0 

 

Table (11) 

Suppose that XXA :
~

 is a KU-function on X given by















3210

3210~
A . So, we have the following 

table.  

x
A
~

 
0 1 2 3 

0

~
A  

1 0 0 0 

1

~
A  

1 1 0 0 

2

~
A  

1 0 1 0 

3

~
A  

1 0 1 1 

 

Table (12) 

We observe in table (12) the binary block code }1011,1010,1100,1000{
3
V that equal the code 

1
V  in 

example 4.2. 
 

Example 4.5. Suppose that X = {0, 1, 2, 3, 4, 5} is a KU-algebra and we represent the order on X as shown in 

figure (7). 

* 0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 0 0 2 3 4 5 

2 0 0 0 3 4 5 

3 0 0 2 0 4 5 

4 0 1 2 3 0 5 

5 0 1 2 3 0 0 

Table (13) 

Suppose that XXA :
~

 is a KU-function on X given by















3210

3210~
A . So, we have the following 

table. 

 

 

  

 Table (14) 

 

 

 

 

 

 

 

 

 

Table (14) 

x
A
~

 
0 1 2 3 4 5 

0

~
A  

1 0 0 0 0 0 

1

~
A  

1 1 0 0 0 0 

2

~
A  

1 1 1 0 0 0 

3

~
A  

1 1 0 1 0 0 

3

~
A  

1 0 0 0 1 0 

3

~
A  

1 0 0 0 1 1 
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We observe in table (12) the binary block code }1011,1010,1100,1000{
3
V that equal the code 

1
V in 

example 4.3. 

 

We define a KU-algebra structure on a poset with 0 element and we have a code in Example 4.2 similar to the 

code in Example 4.4, also we have a code in Example 4.3 similar to the code in Example 4.5. The clear is that 

we use the order of KU-algebra only, not its properties. From the previous examples, we deduce that there is a 

one to one correspondence between the ordering relation    and order relation
c

 . 

Proposition 4.6. There is a one to one correspondence between the ordered relation on KU-algebra and partial 

ordered set. 
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