# On The Structure Equation $F^{p^{2}}+F=0$ 

${ }^{1}$ Lakhan Singh, ${ }^{2}$ Sunder Pal Singh<br>${ }^{l}$ Department of Mathematics, D.J. College, Baraut, Baghpat (U.P.)<br>${ }^{2}$ Department of Physics, D.J. College, Baraut, Baghpat (U.P.)


#### Abstract

In this paper, we have studied various properties of the $F$ - sturcture manifold satisfying $F^{p^{2}}+F=0$ where $p$ is odd prime. Metric $F$-structure, kernel, tangent and normal vectors have also been discussed.


Keywords: Differnetiable manifold, complementary projection operators, metric, kernel, tangent and normal vectors.

## I. Introduction

Let $M^{n}$ be a differentiable manifold of class $C^{\infty}$ and F be a $(1,1)$ tensor of class $C^{\infty}$, satisfying
(1.1) $\quad F^{p^{2}}+F=0$
we define the operators $l$ and $m$ on $M^{n}$ by
(1.2) $\quad l=-F^{p^{2}}-1, \quad m=I+F^{p^{2}-1}$
where I is the identity operator.
From (1.1) and (1.2), we have

$$
\begin{array}{ll}
\text { (1.3) } \quad l+m=I, \quad l^{2}=l, m^{2}=m, \quad l m=m l=0 \\
& F l=l F=F, \\
& F m=m F=0,
\end{array}
$$

Theorem (1.1): Let us define the (1,1) tensors $p$ and $q$ by

$$
\begin{equation*}
p=m+F^{\left(p^{2}-1\right) / 2}, \quad q=m-F^{\left(p^{2}-1\right) / 2} \tag{1.4}
\end{equation*}
$$

Then $p$ and $q$ are invertible operators satisfying
(1.5) $p q=I, p^{3}=q, q^{3}=p, p^{2}=q^{2}, p^{2}-p-q+I=0$

Proof: Using (1.2), (1.3) and (1.4)
(1.6) $p q=I, p^{2}=q^{2}=m-l$ etc, the other results follow similarly

Theorem (1.2): Let us define the ( 1,1 ) tensors $\alpha$ and $\beta$ by

$$
\begin{align*}
& \alpha=m+F^{p^{2}-1}, \beta=m-F^{p^{2}-1}, \text { then }  \tag{1.7}\\
& \alpha^{2}=I=\beta
\end{align*}
$$

Proof: Using (1.2), (1.3) and (1.7), we get the results
Theorem (1.3): Let us define the ( 1,1 ) tensors $\gamma$ and $\delta$ by

$$
\begin{equation*}
\gamma=l-F^{p^{2}-1}, \delta=l+F^{p^{2}-1}, \text { then } \tag{1.9}
\end{equation*}
$$

(1.10) $\gamma^{n}=2^{n} l, \delta=0$

Proof: Using (1.2), (1.3) and (1.9), $\delta=0$,

$$
\gamma=2 l, \gamma^{2}=4 l=2^{2} l \ldots \gamma^{n}=2^{n} l
$$

## II. Metric F-Structure

For F satisfying (1.1) and Riemannian metric $g$, let
(2.1) $\quad \Im F(X, Y)=g(F X, Y)$ is skew symmetric then
(2.2) $g(F X, Y)=-g(X, F Y)$
and $\{F, g\}$ is called metric F-structure
Theorem (2.1): For F satisfying (1.1)

$$
\begin{equation*}
\left.g\left(F^{\left(p^{2}-1\right) / 2} X, F^{\left(p^{2}-1\right) / 2} Y\right)=-g(X, Y)+\right\rceil(X, Y) \tag{2.3}
\end{equation*}
$$

where
(2.4) $\Varangle m(X, Y)=g(m X, Y)=g(X, m Y)$

Proof: Using (1.2), (2.2), (2.4) and $\left(p^{2}-1\right) / 2$ being a multiple of 4 , we have

$$
\begin{align*}
g\left(F^{\left(p^{2}-1\right) / 2} X, F^{\left(p^{2}-1\right) / 2} Y\right) & =(-1)^{\left(p^{2}-1\right) / 2} g\left(X, F^{p^{2}-1} Y\right)  \tag{2.5}\\
& =g(X,-l Y) \\
& =-g(X, l Y) \\
& =-g(X,(I-m) Y) \\
& =-g(X, Y)+m(X, Y)
\end{align*}
$$

## III. Kernel, Tangent And Normal Vectors

We define
(3.1) $\operatorname{Ker} F=\{X: F X=0\}$
(3.2) $\operatorname{Tan} F=\{X: F X=\lambda X\}$
(3.3) $\quad \operatorname{Nor} F=\{X: g(X, F Y)=0, \forall Y\}$

Theorem (3.1): For $F$ satisfying (1.1) we have
(3.4) $\operatorname{Ker} F=\operatorname{Ker} F^{2}=\ldots \quad=\operatorname{Ker} F^{p^{2}}$
(3.5) $\quad \operatorname{Tan} F=\operatorname{Tan} F^{2}=\ldots \quad=\operatorname{Tan} F^{p^{2}}$
(3.6) $\quad \operatorname{Nor} F=\operatorname{Nor} F^{2}=\ldots \quad=\operatorname{Nor} F^{p^{2}}$

Proof: to (3.4) Using (1.1), let $X \in \operatorname{Ker} F$

$$
\begin{aligned}
& \Rightarrow F X=0 \\
& \Rightarrow F^{2} X=0 \\
& \Rightarrow X \in \operatorname{Ker} F^{2}
\end{aligned}
$$

Thus
(3.7) $\quad \operatorname{Ker} F \subseteq \operatorname{Ker} F^{2}$

Now let $X \in \operatorname{Ker} F^{2} \Rightarrow F^{2} X=0$

$$
\Rightarrow F^{3} X=0
$$

$$
\begin{aligned}
& \Rightarrow F^{p^{2}} X=0 \\
& \Rightarrow F X=0
\end{aligned}
$$

$$
\Rightarrow X \in \operatorname{Ker} F
$$

Thus
(3.8) $\operatorname{Ker} F^{2} \subseteq \operatorname{Ker} F$

From (3.7) and (3.8) we get
(3.9) $\quad \operatorname{Ker} F \subseteq \operatorname{Ker} F^{2}$
proceeding similarly we get (3.4)
Proof to (3.5): Let

$$
\begin{aligned}
X \in \operatorname{Tan} F & \Rightarrow F X=\lambda X \\
& \Rightarrow F^{2} X=F(\lambda X)=\lambda^{2} X \\
& \Rightarrow X \in \operatorname{Tan} F^{2}
\end{aligned}
$$

Thus
(3.10) Tan $F \in \operatorname{Tan} F^{2}$

Now let

$$
\begin{aligned}
X \in \operatorname{Tan} F^{2} & \Rightarrow F^{2} X=\lambda^{2} X \\
& \Rightarrow F^{3} X=\lambda^{3} X
\end{aligned}
$$

$$
\Rightarrow F^{p^{2}} X=\lambda^{p} X
$$

$$
\Rightarrow-F X=\lambda^{p} X
$$

$$
\Rightarrow F X=-\lambda^{p} X
$$

$$
\Rightarrow X \in \operatorname{Tan} F
$$

Thus
(3.11) $\quad$ Tan $F^{2} \in$ Tan $F$

From (3.10) and (3.11)
(3.12) Tan $F=$ Tan $F^{2}$ proceeding similarly we get (3.5)

Proof to (3.6): Let

$$
\begin{aligned}
X \in \operatorname{Nor} F & \Rightarrow g(X, F Y)=0 \\
& \Rightarrow g\left(X, F^{2} Y\right)=0 \\
& \Rightarrow X \in \text { Nor } F^{2}
\end{aligned}
$$

Thus
(3.13) $\quad$ Nor $F \in$ Nor $F^{2}$

Now let

$$
\begin{aligned}
X \in \operatorname{Nor} F^{2} & \Rightarrow g\left(X, F^{2} Y\right)=0 \\
& \cdots \cdots \cdots \cdots \cdots \cdots \\
& \Rightarrow g\left(X, F^{p^{2}} Y\right)=0 \\
& \Rightarrow g(X, F Y)=0 \\
& \Rightarrow X \in \text { Nor } F
\end{aligned}
$$

Thus

## (3.14) $\quad \operatorname{Nor} F^{2} \in \operatorname{Nor} F$

From (3.13) and (3.14), we get
(3.15) $\operatorname{Nor} F=\operatorname{Nor} F^{2}$,

Proceeding similarly we get (3.6)

## References

[1]. A Bejancu: On semi-invariant submanifolds of an almost contact metric manifold. An Stiint Univ., "A.I.I. Cuza" Lasi Sec. Ia Mat. (Supplement) 1981, 17-21.
[2]. B. Prasad: Semi-invariant submanifolds of a Lorentzian Para-sasakian manifold, Bull Malaysian Math. Soc. (Second Series) 21 (1988), 21-26.
[3]. F. Careres: Linear invairant of Riemannian product manifold, Math Proc. Cambridge Phil. Soc. 91 (1982), 99-106.
[4]. Endo Hiroshi : On invariant submanifolds of connect metric manifolds, Indian J. Pure Appl. Math 22 (6) (June-1991), 449-453.
[5]. H.B. Pandey \& A. Kumar: Anti-invariant submanifold of almost para contact manifold. Prog. of Maths Volume 21(1): 1987.
[6]. K. Yano: On a structure defined by a tensor field $f$ of the type $(1,1)$ satisfying $\mathrm{f}^{3}+\mathrm{f}=0$. Tensor N.S., 14 (1963), 99-109.
[7]. R. Nivas \& S. Yadav: On CR-structures and $F_{\lambda}(2 \nu+3,2)$ - HSU - structure satisfying $F^{2 v+3}+\lambda^{r} F^{2}=0$, Acta Ciencia Indica, Vol. XXXVII M, No. 4, 645 (2012).
[8]. Abhisek Singh,: On horizontal and complete lifts Ramesh Kumar Pandey of (1,1) tensor fields F satisfying \& Sachin Khare the structure equation $F(2 k+S, S)=0$. International Journal of Mathematics and soft computing. Vol. 6, No. 1 (2016), 143-152, ISSN 2249-3328

